MIPS Decision Instruction

beq register1, register2, Label1

beq is “Branch if (registers are) equal”
- Same meaning as (Using C):
 - If (register1 == register2) goto Label1

bne register1, register2, Label1

bne is “Branch if (registers are) not equal”
- Same meaning as (using C):
 - If (register1 != register2) goto Label1

Called conditional branches
MIPS Goto Instruction

Unconditional branch

j label

Called a jump instruction: jump (or branch) directly to the given label without needing to satisfy any condition

Same meaning as (using C): goto label
Stank C

C Decisions: if Statements
2 kinds of if statements in C
If (condition) clause
If (condition) clause1 else clause2

Rearrange 2nd if into the following:
If (condition) goto Lable1;
clause2;
 ◦ goto Label2;

Label1: clause1;
Label2: DoSomething;
Compiling C if into MIPS

Compile by hand

- If \(i == j \) \(f = g + h \);
- else \(f = g - h \);

- Use this mapping:
 - \(f \): \$s0
 - \(g \): \$s1
 - \(h \): \$s2
 - \(i \): \$s3
 - \(J \): \$s4
Compiling C if into MIPS

Compile by hand
- If \(i == j \) \(f = g + h \);
- else \(f = g - h \);

- Final compiled MIPS Code:
 - `beq $s3, $s4, True` # branch \(i == j \)
 - `sub $s0, $s1, $s2` # \(f = g - h \)
 - `j Fin` # goto Fin
 - `True: add $s0, $s1, $s2`
 - `Fin:`

\[\begin{align*}
\text{if} \quad & (i == j) \quad f = g + h; \\
\text{else} \quad & f = g - h;
\end{align*} \]
We want to translate \(x = y \) into MIPS

(x, y ptrs stored in $s0, $s1 respectively)

1: add $s0, $s1, zero
2: add $s1, $s0, zero
3: lw $s0, 0($s1)
4: lw $s1, 0($s0)
5: lw $t0, 0($s1)
6: sw $t0, 0($s0)
7: lw $s0, 0($t0)
8: sw $s1, 0($t0)

\[\begin{align*}
 a) & \quad 1 \text{ or } 2 \\
 b) & \quad 3 \text{ or } 4 \\
 c) & \quad 5 \rightarrow 6 \\
 d) & \quad 6 \rightarrow 5 \\
 e) & \quad 7 \rightarrow 8
\end{align*} \]