News & Info

- Who’s Hiring May 2016
 - https://news.ycombinator.com/item?id=11611867

- SoCal Code Camp | San Diego, CA 6/25-6/26
Administrivia

- Lab 06
 - Due Thursday
Predictive Parsers

- Like recursive-descent but parser can “predict” which production to use
 - By looking at the next few tokens
 - No backtracking

- Predictive parsers accept LL(k) grammars
 - L means “left-to-right” scan of input
 - L means “leftmost derivation”
 - k means “predict based on k tokens of lookahead”
 - In practice, LL(1) is used
LL(1) vs Recursive Descent

- In recursive-descent,
 - At each step, many choices of production to use
 - Backtracking used to undo bad choices

- In LL(1),
 - At each step, only one choice of production
 - That is
 - When a non-terminal A is leftmost in a derivation
 - The next input symbol is \mathbf{t}
 - There is a unique production $A \rightarrow \alpha$ to use
 - Or no production to use (an error state)

- LL(1) is a recursive descent variant without backtracking
Predictive Parsing and Left Factoring

• Recall the grammar

 \[E \rightarrow T + E \mid T \]

 \[T \rightarrow \text{int} \mid \text{int} \times T \mid (E) \]

• Hard to predict because

 - For \(T \) two productions start with \text{int}

 - For \(E \) it is not clear how to predict

• We need to \text{left-factor} the grammar
Left-Factoring Example

- Recall the grammar
 \[E \to T + E \mid T\]
 \[T \to \text{int} \mid \text{int} \ast T \mid (E)\]

- Factor out common prefixes of productions
 \[E \to T X\]
 \[X \to + E \mid \varepsilon\]
 \[T \to (E) \mid \text{int} Y\]
 \[Y \to \ast T \mid \varepsilon\]
LL(1) Parsing Table Example

- Left-factored grammar
 \[E \rightarrow TX \]
 \[T \rightarrow (E) \mid \text{int } Y \]
 \[X \rightarrow +E \mid \varepsilon \]
 \[Y \rightarrow *T \mid \varepsilon \]

- The LL(1) parsing table:

<table>
<thead>
<tr>
<th></th>
<th>int</th>
<th>*</th>
<th>+</th>
<th>(</th>
<th>)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>TX</td>
<td></td>
<td></td>
<td>TX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>+E</td>
<td></td>
<td>\varepsilon</td>
<td>\varepsilon</td>
</tr>
<tr>
<td>T</td>
<td>int Y</td>
<td></td>
<td></td>
<td>(E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>*T</td>
<td></td>
<td>\varepsilon</td>
<td>\varepsilon</td>
<td>\varepsilon</td>
</tr>
</tbody>
</table>

- leftmost non-terminal
- rhs of production to use
- next input token
LL(1) Parsing Table Example

- **Consider the [E, int] entry**
 - “When current non-terminal is E and next input is int, use production E → T X”
 - This can generate an int in the first position

- **Consider the [Y,+] entry**
 - “When current non-terminal is Y and current token is +, get rid of Y”
 - Y can be followed by + only if Y → ε
LL(1) Parsing Tables. Errors

- Blank entries indicate error situations

- Consider the \([E,*]\) entry
 - “There is no way to derive a string starting with \(*\) from non-terminal \(E\)”
Using Parsing Tables

- Method similar to recursive descent, except
 - For the leftmost non-terminal S
 - We look at the next input token a
 - And choose the production shown at $[S,a]$

- A stack records frontier of parse tree
 - Non-terminals that have yet to be expanded
 - Terminals that have yet to matched against the input
 - Top of stack = leftmost pending terminal or non-terminal

- Reject on reaching error state
- Accept on end of input & empty stack
LL(1) Parsing Algorithm

initialize stack = <S $> and next
repeat
 case stack of
 <X, rest> : if T[X,*next] = Y_1...Y_n
 then stack ← <Y_1... Y_n rest>;
 else error ()
 <t, rest> : if t == *next ++
 then stack ← <rest>;
 else error ()
 until stack == < >
LL(1) Parsing Algorithm

initialize stack = <S $> and next
repeat
case stack of
 <X, rest> : if T[X,*next] = Y_1...Y_n
 then stack ← <Y_1... Y_n rest>;
 else error ();
 <t, rest> : if t == *next ++
 then stack ← <rest>;
 else error ();
until stack == < >

$ marks bottom of stack
For non-terminal X on top of stack, lookup production
For terminal t on top of stack, check t matches next input token.
Pop X, push production rhs on stack. Note leftmost symbol of rhs is on top of the stack.
LL(1) Parsing Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>E $</td>
<td>int * int $</td>
<td>T X</td>
</tr>
<tr>
<td>T X $</td>
<td>int * int $</td>
<td>int Y</td>
</tr>
<tr>
<td>int Y X $</td>
<td>int * int $</td>
<td>terminal</td>
</tr>
<tr>
<td>Y X $</td>
<td>* int $</td>
<td>* T</td>
</tr>
<tr>
<td>* T X $</td>
<td>* int $</td>
<td>terminal</td>
</tr>
<tr>
<td>T X $</td>
<td>int $</td>
<td>int Y</td>
</tr>
<tr>
<td>int Y X $</td>
<td>int $</td>
<td>terminal</td>
</tr>
<tr>
<td>Y X $</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>X $</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

ACCEPT
Constructing Parsing Tables

- Consider non-terminal A, production $A \to \alpha$, & token t
- $T[A,t] = \alpha$ in two cases:
 - If $\alpha \to^* t \beta$
 - α can derive a t in the first position
 - We say that $t \in \text{First}(\alpha)$
 - If $A \to \alpha$ and $\alpha \to^* \varepsilon$ and $S \to^* \beta A \vdash \delta$
 - Useful if stack has A, input is t, and A cannot derive t
 - In this case only option is to get rid of A (by deriving ε)
 - Can work only if t can follow A in at least one derivation
 - We say $t \in \text{Follow}(A)$
Computing First Sets

Definition

\[\text{First}(X) = \{ \tau \mid X \rightarrow^* \tau \alpha \} \cup \{ \varepsilon \mid X \rightarrow^* \varepsilon \} \]

Algorithm sketch:

1. \(\text{First}(\tau) = \{ \tau \} \)

2. \(\varepsilon \in \text{First}(X) \)
 - if \(X \rightarrow \varepsilon \)
 - if \(X \rightarrow A_1 ... A_n \) and \(\varepsilon \in \text{First}(A_i) \) for \(1 \leq i \leq n \)

3. \(\text{First}(\alpha) \subseteq \text{First}(X) \) if \(X \rightarrow A_1 ... A_n \alpha \)
 - and \(\varepsilon \in \text{First}(A_i) \) for \(1 \leq i \leq n \)
First Sets. Example

• Recall the grammar

 \[
 E \rightarrow TX \\
 T \rightarrow (E) | \text{int } Y \\
 X \rightarrow +E | \varepsilon \\
 Y \rightarrow *T | \varepsilon
 \]

• First sets

 \[
 \text{First(() } = \{ () \} \\
 \text{First() } = \{) \} \\
 \text{First(int) } = \{ \text{int } \} \\
 \text{First(+) } = \{ + \} \\
 \text{First(*) } = \{ * \}
 \]

 \[
 \text{First(T) } = \{ \text{int, ()} \} \\
 \text{First(E) } = \{ \text{int, ()} \} \\
 \text{First(X) } = \{ +, \varepsilon \} \\
 \text{First(Y) } = \{ *, \varepsilon \}
 \]
Computing Follow Sets

• Definition:

\[\text{Follow}(X) = \{ \dagger \mid S \xrightarrow{\ast} \beta X \dagger \delta \} \]

• Intuition

 - If \(X \rightarrow A B \) then \(\text{First}(B) \subseteq \text{Follow}(A) \) and \(\text{Follow}(X) \subseteq \text{Follow}(B) \)

 - if \(B \rightarrow \ast \varepsilon \) then \(\text{Follow}(X) \subseteq \text{Follow}(A) \)

 - If \(S \) is the start symbol then \(\$ \in \text{Follow}(S) \)
Algorithm sketch:

1. $\$ \in \text{Follow}(S)$
2. $\text{First}(\beta) - \{\varepsilon\} \subseteq \text{Follow}(X)$
 - For each production $A \rightarrow \alpha X \beta$
3. $\text{Follow}(A) \subseteq \text{Follow}(X)$
 - For each production $A \rightarrow \alpha X \beta$ where $\varepsilon \in \text{First}(\beta)$
Follow sets. Example

Recall the grammar

\[E \rightarrow TX \]
\[T \rightarrow (E) \mid \text{int } Y \]
\[X \rightarrow +E \mid \epsilon \]
\[Y \rightarrow *T \mid \epsilon \]

Follow sets

\[
\begin{align*}
\text{Follow}(+) &= \{ \text{int}, () \} \\
\text{Follow}(&)*) &= \{ \text{int}, () \} \\
\text{Follow}(()) &= \{ \text{int}, () \} \\
\text{Follow}(X) &= \{ $,) \} \\
\text{Follow}(T) &= \{ +,) , $ \} \\
\text{Follow}(Y) &= \{ +,) , $ \} \\
\text{Follow}(\text{int}) &= \{ *, +,) , $ \}
\end{align*}
\]
Constructing LL(1) Parsing tables

- Construct a parsing table T for CFG G

- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $t \in \text{First}(\alpha)$ do
 • $T[A, t] = \alpha$
 - If $\epsilon \in \text{First}(\alpha)$, for each $t \in \text{Follow}(A)$ do
 • $T[A, t] = \alpha$
 - If $\epsilon \in \text{First}(\alpha)$ and $\$ \in \text{Follow}(A)$ do
 • $T[A, \$] = \alpha$
Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
 - And in other cases as well

- Most programming language CFGs are not LL(1)
Bottom-Up Parsing

- Bottom-up parsing is more general than top-down parsing
 - And just as efficient
 - Builds on ideas in top-down parsing

- Bottom-up is the preferred method

- Concepts today, algorithms next time
An Introductory Example

- Bottom-up parsers don’t need left-factored grammars

- Revert to the “natural” grammar for our example:

 \[
 E \rightarrow T + E \mid T \\
 T \rightarrow \text{int} \ast T \mid \text{int} \mid (E)
 \]

- Consider the string: \text{int} \ast \text{int} + \text{int}
The Idea

Bottom-up parsing reduces a string to the start symbol by inverting productions:

\[
\begin{align*}
\text{int} \ast \text{int} + \text{int} & \\
\text{int} \ast \text{T} + \text{int} & \\
\text{T} + \text{int} & \\
\text{T} + \text{T} & \\
\text{T} + \text{E} & \\
\text{E} & \\
\text{T} & \rightarrow \text{int} \\
\text{T} & \rightarrow \text{int} \ast \text{T} \\
\text{T} & \rightarrow \text{int} \\
\text{E} & \rightarrow \text{T} \\
\text{E} & \rightarrow \text{T} + \text{E}
\end{align*}
\]
Observation

- Read the productions in reverse (from bottom to top)
- This is a rightmost derivation!

\[
\begin{align*}
\text{int} \times \text{int} + \text{int} & \quad \text{T} \rightarrow \text{int} \\
\text{int} \times \text{T} + \text{int} & \quad \text{T} \rightarrow \text{int} \times \text{T} \\
\text{T} + \text{int} & \quad \text{T} \rightarrow \text{int} \\
\text{T} + \text{T} & \quad \text{E} \rightarrow \text{T} \\
\text{T} + \text{E} & \quad \text{E} \rightarrow \text{T} + \text{E} \\
\text{E} & \\
\end{align*}
\]
Important Fact #1 about bottom-up parsing:

A bottom-up parser traces a rightmost derivation in reverse.
A Bottom-up Parse
A Bottom-up Parse in Detail (1)

\[\text{int } \ast \text{ int } \ast \text{ int } + \text{ int } \]
A Bottom-up Parse in Detail (2)

int * int + int

int * T + int

T

int * int + int

int
A Bottom-up Parse in Detail (3)

int * int + int
int * T + int
T + int
A Bottom-up Parse in Detail (4)
A Bottom-up Parse in Detail (5)

```
int * int + int
int * T + int
T + int
T + T
T + E
```

![Diagram](image)

```
T

E
```

```
int
*
int
+
int
```
A Bottom-up Parse in Detail (6)
A Bottom-up Parsing Algorithm

Let $I =$ input string

repeat

pick a non-empty substring β of I

where $X \rightarrow \beta$ is a production

if no such β, backtrack

replace one β by X in I

until $I =$ "S" (the start symbol) or all possibilities are exhausted
Where do Reductions Happen?

Important Fact #1 has an interesting consequence:
- Let $\alpha\beta\omega$ be a step of a bottom-up parse
- Assume the next reduction is by $X \rightarrow \beta$
- Then ω is a string of terminals

Why? Because $\alpha X \omega \rightarrow \alpha \beta \omega$ is a step in a rightmost derivation.
Notation

- Idea: Split string into two substrings
 - Right substring is as yet unexamined by parsing (a string of terminals)
 - Left substring has terminals and non-terminals

- The dividing point is marked by a |
 - The | is not part of the string

- Initially, all input is unexamined |x_1x_2 \ldots x_n|
Shift-Reduce Parsing

Bottom-up parsing uses only two kinds of actions:

- **Shift**
- **Reduce**
Shift

• *Shift*: Move | one place to the right
 - Shifts a terminal to the left string

 $ABC|xyz \Rightarrow ABCx|yz$
Reduce

- Apply an inverse production at the right end of the left string
 - If $A \rightarrow xy$ is a production, then

$$Cbxy|ijk \Rightarrow CbA|ijk$$
The Example with Reductions Only

\[
\begin{align*}
\text{int} \times \text{int} &\mid + \text{int} \\
\text{int} \times \text{T} &\mid + \text{int} \\
\text{T} + \text{int} &\mid \\
\text{T} + \text{T} &\mid \\
\text{T} + \text{E} &\mid \\
\text{E} &\mid \\
\end{align*}
\]

\[
\begin{align*}
\text{reduce } \text{T} &\rightarrow \text{int} \\
\text{reduce } \text{T} &\rightarrow \text{int} \times \text{T} \\
\text{reduce } \text{T} &\rightarrow \text{int} \\
\text{reduce } \text{E} &\rightarrow \text{T} \\
\text{reduce } \text{E} &\rightarrow \text{T} + \text{E} \\
\end{align*}
\]
The Example with Shift-Reduce Parsing

```
|int * int + int          | shift |
int | * int + int            | shift |
int * | int + int            | shift |
int * int | + int         | reduce T → int |
int * T | + int     | reduce T → int * T |
T | + int    | shift |
T+ | int    | shift |
T + int |     | reduce T → int |
T + T |     | reduce E → T |
T + E |     | reduce E → T + E |
E |         |
```
A Shift-Reduce Parse in Detail (1)

\[\text{int} \ast \text{int} + \text{int} \]

\[\text{int} \ast \text{int} + \text{int} \]
A Shift-Reduce Parse in Detail (2)

\[
\begin{align*}
\text{int} &\quad \ast \quad \text{int} &\quad + &\quad \text{int} \\
\text{int} &\quad | &\quad \ast \quad \text{int} &\quad + &\quad \text{int}
\end{align*}
\]
A Shift-Reduce Parse in Detail (3)

\[\text{int} \times \text{int} + \text{int} \]
\[\text{int} \mid \times \text{int} + \text{int} \]
\[\text{int} \times \mid \text{int} + \text{int} \]

\[\text{int} \times \text{int} + \text{int} \]

A Shift-Reduce Parse in Detail (4)

```
| int * int + int |
| int | * int + int |
| int * | int + int |
| int * int | + int |
```

```
int * int + int
```

↑
A Shift-Reduce Parse in Detail (5)
A Shift-Reduce Parse in Detail (6)

| int * int + int
| int | * int + int
| int * | int + int
| int * int | + int
| int * T | + int
| T | + int

```
+---+
| T |
+---+
|    +---+
|      |   +---+
|       |     |     +---+
|       |     |     int  +---+
|       |     |     int
```

```
A Shift-Reduce Parse in Detail (7)

\[
\begin{align*}
| & \text{int } * \text{ int } + \text{ int} \\
\text{int} & | \text{ int } * \text{ int } + \text{ int} \\
\text{int} & | \text{ int } * \text{ int } | + \text{ int} \\
\text{int} & | \text{ int } * \text{ T } | + \text{ int} \\
\text{T} & | + \text{ int} \\
\text{T} & | + \text{ int} \\
\text{int} & | + \text{ int} \\
\text{int} & | + \text{ int} \\
\end{align*}
\]
A Shift-Reduce Parse in Detail (8)
A Shift-Reduce Parse in Detail (9)
A Shift-Reduce Parse in Detail (10)

\[
\begin{align*}
| & \text{int} \ast \text{int} + \text{int} \\
\text{int} & | \ast \text{int} + \text{int} \\
\text{int} & \ast \text{int} + \text{int} \\
\text{int} & \ast \text{T} + \text{int} \\
\text{T} & + \text{int} \\
\text{T} & + \text{int} \\
\text{T} + \text{T} & | \\
\text{T} + \text{E} & | \\
\end{align*}
\]

\[\text{T} \quad \ast \quad \text{int} \quad + \quad \text{int} \quad \text{E}\]
A Shift-Reduce Parse in Detail (11)
The Stack

- Left string can be implemented by a stack
  - Top of the stack is the |

- Shift pushes a terminal on the stack

- Reduce pops 0 or more symbols off of the stack (production rhs) and pushes a non-terminal on the stack (production lhs)
Conflicts

- In a given state, more than one action (shift or reduce) may lead to a valid parse

- If it is legal to shift or reduce, there is a \textit{shift-reduce} conflict

- If it is legal to reduce by two different productions, there is a \textit{reduce-reduce} conflict

- You will see such conflicts in your project!
  - More next time...