2.2 GROWTH OF FUNCTIONS

DEF: Let f and g be functions $\mathcal{R} \rightarrow \mathcal{R}$. Then f is *asymptotically dominated* by g if $(\exists K \in \mathcal{R})(\forall x > K)[f(x) \leq g(x)]$

NOTATION: $f \preceq g$.

Remark: This means that eventually, there is an location $x = K$, after which the graph of the function g lies above the graph of the function f .

BIG OH CLASSES

```
DEF: Let f and g be functions \mathcal{R} \rightarrow \mathcal{R}. Then
f is in the class \mathcal{O}(g) ("big-oh of g") if
                        (\exists C \in \mathcal{R})[f \prec Cg]
```
NOTATION: $f \in \mathcal{O}(g)$.

DISAMBIGUATION: Properly understood, $\mathcal{O}(g)$ is the class of all functions that are asymptotically dominated by any multiple of g.

TERMINOLOGY NOTE: The phrase " f is big-oh of g " makes sense if one imagines either that the word "in" preceded the word "big-oh", or that "big-oh of g " is an adjective.

Example 2.2.1: $4n^2 + 21n + 100 \in \mathcal{O}(n^2)$ **Proof:** First suppose that $n \geq 0$. Then

$$
4n2 + 21n + 100 \le 4n2 + 24n + 100
$$

$$
\le 4(n2 + 6n + 25)
$$

$$
\le 8n2
$$
 which holds whenever

 $n^2 \geq 6n + 25$, which holds whenever $n^2 - 6n + 9 \geq 34$, which holds whenever $n-3 \geq \sqrt{34}$, which holds whenever $n \geq 9$. Thus, $(\forall n \ge 9) [4n^2 + 21n + 100 \le 8n^2].$

Remark: We notice that n^2 itself is asymptotically dominated by $4n^2 + 21n + 100$. However, we proved that $4n^2 + 21n + 100$ is asymptotically dominated by $8n^2$, a multiple of n^2 .

WITNESSES

This operational definition of membership in a big-oh class makes the definition of asymptotic dominance explicit.

DEF: Let f and g be functions $\mathcal{R} \rightarrow \mathcal{R}$. Then f is **in the class** $\mathcal{O}(g)$ ("**big-oh of g**") if $(\exists C \in \mathcal{R})(\exists K \in \mathcal{R})(\forall x > K)[Cq(x) \geq f(x)]$

DEF: In the definition above, a multiplier C and a location K on the x-axis after which $Cg(x)$ dominates $f(x)$ are called the **witnesses** to the relationship $f \in \mathcal{O}(q)$.

Example 2.2.1, continued: The values $C = 8$ and $M = 9$ are witnesses to the relationship $4n^2 + 21n + 100 \in \mathcal{O}(n^2)$.

Larger values of C and K could also serve as witnesses. However, a value of C less than or equal to 4 could not be a witness.

CLASSROOM EXERCISE

If one chooses the witness $C = 5$, then $K = 30$ could be a co-witness, but $K = 9$ could not.

Lemma 2.2.1. $(x+1)^n \in \mathcal{O}(x^n)$.

Proof: Let C be the largest coefficient in the (binomial) expansion of $(x+1)^n$, which has $n+1$ terms. Then $(x+1)^n \leq C(n+1)x^n$. \diamondsuit

Example 2.2.2: The proof of Lemma 2.2.1 uses the witnesses

$$
C = \binom{n}{\lfloor \frac{n}{2} \rfloor}
$$
 and $K = 0$

Theorem 2.2.2. Let $p(x)$ be a polynomial of *degree n. Then* $p(x) \in O(x^n)$ *.*

Proof: Informally, just generalize Example 2.2.1. Formally, just apply Lemma $2.2.1$.

Example 2.2.3: $100n^5 \in \mathcal{O}(e^n)$. Observing that $n = e^{\ln n}$ inspires what follows.

Proof: Taking the upper Riemann sum with unit-sized intervals for $\ln x = \int_1^n$ $\frac{dx}{x}$ implies for $n > 1$ that

$$
\ln(n) < \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}
$$
\n
$$
\leq \left(\frac{1}{1} + \dots + \frac{1}{5}\right) + \frac{1}{6} + \dots + \frac{1}{n}
$$
\n
$$
\leq \left(\frac{1}{1} + \dots + \frac{1}{5}\right) + \frac{1}{6} + \dots + \frac{1}{6}
$$
\n
$$
\leq 5 + \frac{n - 5}{6}
$$

Therefore, $6 \ln n \le n + 25$, and accordingly, $100n^5 = 100 \cdot e^{5 \ln n} < 100 \cdot e^{n+25} < e^{32} \cdot e^n$ \diamond We have used the witnesses $C = e^{32}$ and $K = 0$.

Theorem 2.2.3. *Powers dominate logs.* **Proof:** See Example 2.2.3. \diamondsuit

Theorem 2.2.4. *Exponentials dominate polynomials.*

Proof: See Example 2.2.3.

Example 2.2.4: $2^n \in \mathcal{O}(n!)$. **Proof:**

$$
\overbrace{2 \cdot 2 \cdots 2}^{n \text{ times}} = 2 \cdot 1 \cdot \overbrace{2 \cdot 2 \cdots 2}^{n-1 \text{ times}}
$$

$$
\leq 2 \cdot 1 \cdot 2 \cdot 3 \cdots n = 2n!
$$

We have used the witnesses $C = 2$ and $K = 0$.

BIG-THETA CLASSES

DEF: Let f and g be functions $\mathcal{R} \rightarrow \mathcal{R}$. Then f is **in the class** $\Theta(g)$ ("**big-theta of g**") if $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(f)$.