
10/23/2019

1 Running time of insertion sort

 The running time depends on the input: an already sorted sequence is 

easier to sort.

 Parameterize the running time by the size of the input, since short 

sequences are easier to sort than long ones.

 Generally, we seek upper bounds on the running time, because everybody 

likes a guarantee.



10/23/2019

2

Example of insertion sort

5 2 4 6 1 3

2 5 4 6 1 3

2 4 5 6 1 3

2 4 5 6 1 3

1 2 4 5 6 3

1 2 3 4 5 6 Done!



10/23/2019

3

InsertionSort(A, n) {
for j = 2 to n {
key = A[j];
i = j - 1;

while (i > 0) and (A[i] > key) {
A[i+1] = A[i];
i = i – 1;

}
A[i+1] = key
}

}

Insertion Sort

1 i j

Keysorted



10/23/2019

4 Kinds of analyses

Worst case

Provides an upper bound on running time

An absolute guarantee

Best case – not very useful

Average case

Provides the expected running time

Very useful, but treat with care: what is “average”?

Random (equally likely) inputs

Real-life inputs



10/23/2019

5 Analysis of insertion Sort

InsertionSort(A, n) {

for j = 2 to n {

key = A[j]

i = j - 1;

while (i > 0) and (A[i] > key) {

A[i+1] = A[i]

i = i - 1

}

A[i+1] = key

}

}

How many times will 

this line execute?



10/23/2019

6 Analysis of insertion Sort

InsertionSort(A, n) {

for j = 2 to n {

key = A[j]

i = j - 1;

while (i > 0) and (A[i] > key) {

A[i+1] = A[i]

i = i - 1

}

A[i+1] = key

}

}

How many times will 

this line execute?



10/23/2019

7 Analysis of insertion Sort
Statement cost   time__

InsertionSort(A, n) {

for j = 2 to n { c1 n

key = A[j] c2 (n-1)

i = j - 1; c3 (n-1)

while (i > 0) and (A[i] > key) { c4 S

A[i+1] = A[i] c5 (S-(n-1))

i = i - 1 c6 (S-(n-1))

} 0

A[i+1] = key c7 (n-1)

} 0

}

S = t2 + t3 + … + tn where tj is number of while 
expression evaluations for the  jth for loop iteration



10/23/2019

8 Analysis of insertion Sort
Statement cost   time__

InsertionSort(A, n) {

for j = 2 to n { c1 n

key = A[j] c2 (n-1)

i = j - 1; c3 (n-1)

while (i > 0) and (A[i] > key) { c4 S

A[i+1] = A[i] c5 (S-(n-1))

i = i - 1 c6 (S-(n-1))

} 0

A[i+1] = key c7 (n-1)

} 0

}

What are the basic operations 

(most executed lines)?



10/23/2019

9

Statement cost   time__

InsertionSort(A, n) {

for j = 2 to n { c1 n

key = A[j] c2 (n-1)

i = j - 1; c3 (n-1)

while (i > 0) and (A[i] > key) { c4 S

A[i+1] = A[i] c5 (S-(n-1))

i = i - 1 c6 (S-(n-1))

} 0

A[i+1] = key c7 (n-1)

} 0

}

Analysis of insertion Sort



10/23/2019

10

Statement cost   time__

InsertionSort(A, n) {

for j = 2 to n { c1 n

key = A[j] c2 (n-1)

i = j - 1; c3 (n-1)

while (i > 0) and (A[i] > key) { c4 S

A[i+1] = A[i] c5 (S-(n-1))

i = i - 1 c6 (S-(n-1))

} 0

A[i+1] = key c7 (n-1)

} 0

}

Analysis of insertion Sort



10/23/2019

11 What can S be?

S =  j=2..n tj

Best case:

Worst case:

Average case:

1 i j

sorted

Inner loop stops when A[i] <= key, or i = 0

Key



10/23/2019

12 Best case

Array already sorted

S =  j=2..n tj

tj = 1 for all j

S = n-1        T(n) = Θ (n)

1 i j

sorted Key

Inner loop stops when A[i] <= key, or i = 0



10/23/2019

13 Worst case

 Array originally in reverse order sorted

 S =  j=2..n tj

 tj = j

 S =  j=2..n j = 2 + 3 + … + n = (n-1) (n+2) / 2 = Θ (n2)

1 i j

sorted

Inner loop stops when A[i] <= key

Key



10/23/2019

14 Average case

 Array in random order

 S =  j=2..n tj

 tj = j / 2 on average

 S =  j=2..n j/2 = ½  j=2..n j = (n-1) (n+2) / 4 = Θ (n2)

1 i j

sorted

Inner loop stops when A[i] <= key

Key


