
Section 4.1

Computable Problems
 From the Church-Turing Thesis, we can use TMs tell if a problem is computable

 Can represent problems as languages
 Formulate problems in terms of testing membership in a language

 If the language is decidable, the problem is decidable
 Can simulate all previous topics in TMs

 Example: acceptance problem
 Test whether a DFA accepts a given string
 Can be expressed as a language, ADFA

 ADFA = { <B,w>|B is a DFA that accepts input string w}

 Problem of testing whether a DFA B accepts an input w is the same as testing
whether <B,w> is a member of the language ADFA.

Example: Deterministic FA
 Present a TM M that decides ADFA.

 (Implementation Description) M = “On input <B,w>, where B is a DFA and w is
a string:
 1. Simulate B on input w.
 2. If the simulation ends in an accept state, accept.

 If it ends in a nonaccepting state, reject.

 TM M exists, ADFA is decidable
 It is possible to test whether a DFA will accept a given string

Example: Nondeterministic FA
 ANFA = {<B,w> | B is an NFA that accepts input string w}
 Present a TM N that decides ANFA.

 May make use of TM M from previous example

 N = “On input <C,w>, where C is an NFA and w is a string:
 1. Convert NFA C to DFA B
 2. Run TM M on <B,w>.
 3. If M accepts, accept.

 Otherwise, reject.

 TM N exists, ANFA is decidable
 It is possible to test whether a NFA will accept a given string

Example: Regular Expressions

 AREX = {<R,w> | R is a regular expression that generates string w}
 Present a TM P that decides AREX.

 May make use of TM N from previous example

 P = “On input <R,w>, where R is a regular expression and w is a string:
 1. Convert RE R to NFA C
 2. Run TM N on <C,w>.
 3. If N accepts, accept.

 Otherwise, reject.

 TM P exists, AREX is decidable
 It is possible to test whether a regular expression generates a specific string

Example: Emptiness Testing
 All previous problems tested whether an FA accepts a particular string.

 It is sometimes important to test if an FA accepts anything at all.

 EDFA = { | B is a DFA and L(B) = 0}
 Present a TM T that decides EDFA.

 T = “On input , where B is a DFA:
 1. Mark the start state of B.
 2. Mark any states that can be directly transitioned from a currently marked state

 Repeat until no new states are marked.
 3. If no marked states are accept states, accept.

 Otherwise, reject.

 TM T exists, EDFA is decidable
 It is possible to test whether a DFA accepts no strings
 Test whether DFA’s language is empty

Presenter Notes
Presentation Notes
0 = empty set

Example: Equivalence Testing
 EQDFA = { <B1,B2> | B1,B2 are DFAs and L(B1) = L(B2) }

 Present a TM F that decides EQDFA.

 Create a DFA C which recognizes strings that are accepted by either B1or B2 but not
both.
 L(C) = symmetric difference
 For L(B1) = L(B2), L(C) must be empty

 F = “On input < B1,B2 >, where B1,B2 are DFAs:
 1. Construct DFA C as described.
 2. Run TM T for emptiness testing
 3. If T accepts, accept.

 Otherwise, reject.

 TM F exists, EQDFA is decidable
 It is possible to test whether two DFAs are equivalent

Example: Context Free Grammars
 ACFG = { <G,w> | G is a CFG that generates string w}

 Present a TM S that decides ACFG.

 Systematically produce derivations of G until one matches w
 May never halt if correct derivation is never encountered

 TM will be a recognizer but not a decider

 If rules are put into Chomsky normal form, G is guaranteed to produce string of the correct
length within 2n-1 steps
 n = length of w
 Only need to check all derivations with 2n-1 steps

 Finite number of derivations, halting is now guaranteed

Example: Context Free Grammars

 S = “On input < G,w >, where G is a CFG and w is a string:
 1. Convert G to equivalent grammar in Chomsky normal form.
 2. List all derivations with 2n-1 steps
 3. If any derivation generates w, accept

 Otherwise, reject

 TM S exists, ACFG is decidable
 It is possible to test if a CFG generates a particular string

Example: CFG Emptiness
 ECFG = { <G> | G is a CFG and L(G) = 0}

 Present a TM R that decides ECFG.

 R = “On input < G>, where G is a CFG:
 1. Mark all terminal symbols in G
 2. Mark any variables that can be substituted with all marked symbols

 Repeat until no new variables get marked
 3. If start variable is not marked, accept.

 Otherwise, reject.

 TM R exists, ECFG is decidable
 It is possible to test if a CFG generates any strings

Example: Every CFL is Decidable
 EQCFG = { <G1,G2> | G1,G2 are CFGs and L(G1) = L(G2)}

 Present a TM Q that decides EQCFG.

 Q = “On input < G>, where G is a CFG:
 1. Mark all terminal symbols in G
 2. Mark any variables that can be substituted with all marked symbols

 Repeat until no new variables get marked
 3. If start variable is not marked, accept.

 Otherwise, reject.

 TM Q exists, ECFG is decidable
 It is possible to test if a CFG generates any strings

	Decidable Languages
	Computable Problems
	Example: Deterministic FA
	Example: Nondeterministic FA
	Example: Regular Expressions
	Example: Emptiness Testing
	Example: Equivalence Testing
	Example: Context Free Grammars
	Example: Context Free Grammars
	Example: CFG Emptiness
	Slide Number 11
	Slide Number 12
	Example: Every CFL is Decidable

