# **Turing Machines**

## Turing Machine (TM)

- Proposed by Alan Turing in 1936
- Similar to finite automaton
  - A finite state machine but with a tape which is used as unlimited and unrestricted memory
- Model of a general-purpose computer
  - Can do anything a real computer can do



- Memory is represented by an infinite tape
  - A controller moves along the tape to read and write symbols

### How a Turing Machine Works

- Initially the tape contains only the input string
  - Blank everywhere else
- Machine can store information anywhere on tape
- The TM continues computing until it decides to produce an output
  - Has accepting and rejecting states
  - Continues forever, <u>never halting</u>, if it never reaches an accepting or rejecting state
- 3 Outcomes of TM
  - Accept, Reject, or Infinite Loop



#### TM vs Finite Automata

- **1**. TM can both write and read the tape
- 2. Controller can move both left and right along the tape
- 3. Tape is infinite
- 4. Rejecting and accepting states happen immediately

### Example 1

- Given a TM that accepts a string in B = {w#w |  $w \in \{0,1\}^*$ }
- Too long to remember all states
  - May move back and forth on tape
  - Compare relative position of inputs using # as reference
  - Matches crossed off with an x symbol
    - If mismatch, enter reject state
    - If all match, enter accept state
- TM computing on input
  - 011000#011000

| Ŏ      | 1      | 1 | 0 | 0 | 0 | #     | 0      | 1 | 1 | 0 | 0 | 0 ц |       |
|--------|--------|---|---|---|---|-------|--------|---|---|---|---|-----|-------|
|        | ¥<br>1 | 1 | 0 | 0 | 0 | #     | 0      | 1 | 1 | 0 | 0 | 0   |       |
| л      | Т      | Ŧ | 0 | 0 | 0 | π<br> |        | Т | Т | U | U | ΟL  | •••   |
| x      | 1      | 1 | 0 | 0 | 0 | #     | ¥<br>X | 1 | 1 | 0 | 0 | 0 ц | • • • |
| ×<br>x | 1      | 1 | 0 | 0 | 0 | #     | x      | 1 | 1 | 0 | 0 | 0 ц | • • • |
| x      | ¥<br>X | 1 | 0 | 0 | 0 | #     | x      | 1 | 1 | 0 | 0 | 0 ц | •••   |
| x      | x      | x | x | x | x | #     | x      | x | x | x | x | x ⊔ | • • • |
|        | accept |   |   |   |   |       |        |   |   |   |   | pt  |       |

### Formal Definition for TM

- A **Turing machine** is a 7-tuple,  $(Q, \Sigma, \Gamma, \delta, q_0, qac_{cept}, qre_{ject})$ , where  $Q, \Sigma, \Gamma$  are all finite sets and
  - Q is the set of states,
  - $\Sigma$  is the input alphabet not containing the **blank symbol** \_,
  - $\Gamma$  is the tape alphabet, where  $\subseteq \subset \Gamma$  and  $\Sigma \subseteq \Gamma$ ,
  - $\delta: Q \ge \Gamma \rightarrow Q \ge \Gamma \ge \{L, R\}$  is the transition function,
  - $q_0 \in Q$  is the start state,
  - $q_{accept} \in Q$  is the accept state, and
  - $q_{reject} \in Q$  is the reject state, where  $q_{accept} \neq q_{reject}$ .
- Transition notation
  - δ(q,a) = (r,b,D)
    - q = current state
    - a = current symbol
    - b = symbol which overwrites a
    - r = new state
    - D = direction write head moves after rewriting symbol. (L or R)
- While formal definition is useful, it may be too large to describe.

### **Turing Machine Computation**

• Given a TM 
$$M = (Q, \Sigma, \Gamma, \delta, q_0, qac_{cept}, qre_{ject})$$

- Initially, M receives input w of length n and stores w on the n leftmost squares of tape
  - The rest of the tape is filled with blank spaces
    - 1<sup>st</sup> blank marks the end of input w
  - Head starts on the leftmost space on tape
- Transitions are described by transition function, δ, and will more either R or L
  - If head tries to move left off tape, it stays at 1<sup>st</sup> position
  - Continues until accept or reject state

## Configurations

- As a TM computes, it changes 3 things over time:
  - 1. Current state
  - 2. Current tape contents
  - 3. Current head location
- The combination of the above 3 is called a **Configuration** 
  - Notation: uqv
    - q = current state
    - uv = current stored tape string
      - The head location is the 1<sup>st</sup> symbol of v
    - Ex: uqv = 1011q<sub>7</sub>01111
      - Current state = q<sub>7</sub>
      - Tape contents = 101101111
      - Head location = 5<sup>th</sup> position (2<sup>nd</sup> zero in uv)



## **Configuration Transitions**

- Configuration  $C_1$ , **yields** configuration  $C_2$  if the TM goes from  $C_1$  to  $C_2$  in a single step
- Examples
  - $\delta(q_i, b) = (q_j, c, L)$ 
    - uaq<sub>i</sub>bv yields uq<sub>j</sub>acv
    - Head pointing to b, replace with c, move <u>left</u>, change state
  - $\delta(q_i,b) = (q_j,c,R)$ 
    - uaq<sub>i</sub>bv yields uacq<sub>j</sub>v
    - Head pointing to b, replace with c, move <u>right</u>, change state
- Special cases at either end of the tape contents
  - If the head is in the left most position,  $\delta(q_i, b) = (q_i, c, L)$ 
    - q<sub>i</sub>bv **yields** q<sub>j</sub>cv, head does not move
  - If the head is in the right most position,  $\delta(q_i, b) = (q_j, c, R)$ 
    - uaq<sub>i</sub> yields uacq<sub>j</sub>, b was a blank space

## **Configuration Terms**

- Start Configuration
  - Q<sub>0</sub>w
- Accepting configuration
  - Configuration with the accepting state as current state
- Rejecting configuration
  - Configuration with the rejecting state as current state
- Halting configuration
  - Either accepting or rejecting configuration which halts TM

## Recognizable vs Decidable

- A language is **Turing-recognizable** if some Turing machine recognizes it
  - A collection of strings that TM, M, accepts is the language of M
    - The language recognized by M, L(M)
- Difficult to tell if a TM is loop indefinitely or just taking long to reach a halting configuration
  - Useful to have a TM that will never loop
    - Decider



- A language is **Turing-decidable** if it is recognized by some TM that is a decider
  - When a decider recognizes a language it is said it **decides** that language
- Every Turing-decidable language is Turing-recognizable