
Section 3.1



Turing Machine (TM)
 Proposed by Alan Turing in 1936

 Similar to finite automaton
 A finite state machine but with a tape which is used as unlimited and unrestricted memory

 Model of a general-purpose computer
 Can do anything a real computer can do

 Memory is represented by an infinite tape
 A controller moves along the tape to read and write symbols

Presenter Notes
Presentation Notes
A PDA can only access the top of its stack, whereas a TM can access any position on an infinite tape. The infinite tape cannot be simulated with a single stack, so a PDA is less computationally powerful -- there are algorithms that can be programmed with a TM that cannot be programmed with a PDA. An automaton with access to two stacks rather than just one can simulate a TM and thus has equivalent computational power



How a Turing Machine Works
 Initially the tape contains only the input string

 Blank everywhere else

 Machine can store information anywhere on tape

 The TM continues computing until it decides to produce an output
 Has accepting and rejecting states
 Continues forever, never halting, if it never reaches an accepting or rejecting state

 3 Outcomes of TM
 Accept, Reject, or Infinite Loop



TM vs Finite Automata
1. TM can both write and read the tape

2. Controller can move both left and right along the tape

3. Tape is infinite

4. Rejecting and accepting states happen immediately



Example 1
 Given a TM that accepts a string in B = {w#w | w ∈ {0,1}*} 

 Too long to remember all states
 May move back and forth on tape
 Compare relative position of inputs 

using # as reference
 Matches crossed off with an x symbol

 If mismatch, enter reject state
 If all match, enter accept state

 TM computing on input
 011000#011000



 A Turing machine is a 7-tuple, (𝑄𝑄, Σ, Γ, 𝛿𝛿, 𝑞𝑞0, 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐, 𝑞𝑞𝑞𝑞𝑐𝑐𝑗𝑗𝑐𝑐𝑞𝑞𝑐𝑐), where 𝑄𝑄, Σ, Γ are all finite sets and 
 𝑄𝑄 is the set of states,
 Σ is the input alphabet not containing the blank symbol ⎵,
 Γ is the tape alphabet, where ⎵ ∈ Γ and Σ ⊆ Γ,
 𝛿𝛿:𝑄𝑄 x Γ → 𝑄𝑄 x Γ x {L, R} is the transition function,
 𝑞𝑞0 ∈ 𝑄𝑄 is the start state,
 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐 ∈ 𝑄𝑄 is the accept state, and
 𝑞𝑞𝑞𝑞𝑐𝑐𝑗𝑗𝑐𝑐𝑞𝑞𝑐𝑐 ∈ 𝑄𝑄 is the reject state, where 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐 ≠ 𝑞𝑞𝑞𝑞𝑐𝑐𝑗𝑗𝑐𝑐𝑞𝑞𝑐𝑐.

 Transition notation
 δ(q,a) = (r,b,D)

 q = current state
 a = current symbol
 b = symbol which overwrites a
 r = new state
 D = direction write head moves after rewriting symbol. (L or R)

 While formal definition is useful, it may be too large to describe.

Formal Definition for TM



Turing Machine Computation
 Given a TM 𝑀𝑀 = (𝑄𝑄, Σ, Γ, 𝛿𝛿, 𝑞𝑞0, 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐, 𝑞𝑞𝑞𝑞𝑐𝑐𝑗𝑗𝑐𝑐𝑞𝑞𝑐𝑐)

 Initially, M receives input w of length n and stores w on the n leftmost squares of tape
 The rest of the tape is filled with blank spaces

 1st blank marks the end of input w

 Head starts on the leftmost space on tape

 Transitions are described by transition function, δ, and will more either R or L
 If head tries to move left off tape, it stays at 1st position
 Continues until accept or reject state



Configurations
 As a TM computes, it changes 3 things over time:

1. Current state
2. Current tape contents
3. Current head location

 The combination of the above 3 is called a Configuration
 Notation: uqv

 q = current state
 uv = current stored tape string 

 The head location is the 1st symbol of v
 Ex: uqv = 1011q701111

 Current state = q7

 Tape contents = 101101111
 Head location = 5th position (2nd zero in uv)



Configuration Transitions
 Configuration C1, yields configuration C2 if the TM goes from C1 to C2 in a single step

 Examples
 δ(qi,b) = (qj,c,L)

 uaqibv yields uqjacv
 Head pointing to b, replace with c, move left, change state

 δ(qi,b) = (qj,c,R)
 uaqibv yields uacqjv
 Head pointing to b, replace with c, move right, change state

 Special cases at either end of the tape contents
 If the head is in the left most position, δ(qi,b) = (qj,c,L) 

 qibv yields qjcv, head does not move
 If the head is in the right most position, δ(qi,b) = (qj,c,R) 

 uaqi yields uacqj, b was a blank space



Configuration Terms
 Start Configuration

 Q0w

 Accepting configuration
 Configuration with the accepting state as current state

 Rejecting configuration
 Configuration with the rejecting state as current state

 Halting configuration
 Either accepting or rejecting configuration which halts TM



Recognizable vs Decidable
 A language is Turing-recognizable if some Turing machine recognizes it

 A collection of strings that TM, M, accepts is the language of M
 The language recognized by M, L(M)

 Difficult to tell if a TM is loop indefinitely 
or just taking long to reach a halting configuration
 Useful to have a TM that will never loop

 Decider

 A language is Turing-decidable if it is recognized by some TM that is a decider
 When a decider recognizes a language it is said it decides that language

 Every Turing-decidable language is Turing-recognizable


	Turing Machines
	Turing Machine (TM)
	How a Turing Machine Works
	TM vs Finite Automata
	Example 1
	Formal Definition for TM
	Turing Machine Computation
	Configurations
	Configuration Transitions
	Configuration Terms
	Recognizable vs Decidable

