Turing Machines Examples

- Given TM M₂ that <u>decides</u> A = { 0^{2^n} | n ≥ 0 }
 - Language consists of strings of 0's whose length is a power of 2
- M₂ = "On input string w:
 - 1. Sweep left to right across the tape, crossing off every other 0
 - 2. If in stage 1 the tape contained a single 0, accept
 - 3. If in stage 1 the tape contained more than a single 0 and the number of 0s was odd, reject
 - 4. Return the head to the left-hand end of the tape
 - 5. Go to stage 1
- At each iteration of stage 1, the number of 0s is <u>cut in half</u>
 - Done by marking <u>every other</u> 0
 - Keeps track of number of 0s on each pass

- Formal Definition, $M_2 = (Q, \Sigma, \Gamma, \delta, q_0, qacc_{ept}, qrej_{ect})$
 - $Q = \{q_1, \dots, q_5, q_{accept}, q_{reject}\}$
 - $\Sigma = \{0\}$
 - Γ = {0, x, _ }
 - We describe δ with a state diagram
 - The start, accept, and reject states are q₁, q_{accept}, and q_{reject}, respectively
- Notation: $a \rightarrow b, D$
 - a = symbol read on tape
 - b = symbol to be written on tape
 - May be left blank (does not alter tape)
 - D = direction the head moves
 - Shorthand for δ(q,a) = (r,b,D)

- Transitions
 - Begins by writing a blank on the leftmost 0
 - Marks the start of tape
 - State 2, checks if # of 0s is correct
 - If input = 0, marks x, moves right, go to q₃
 - If input = x, moves right
 - If input = _, moves right, go to q_{accept}
 - State 3, intermediate transition
 - If input = 0, moves right, go to q₄
 - If input = x, moves right
 - If input = _, moves left, go to q₅

- Transitions
 - State 4, checks if # of 0s is incorrect
 - If input = 0, moves right, marks x, go to q₃
 - If input = x, moves right
 - If input = _, moves right, go to q₃
 - State 5, moves head back to left side
 - If input = 0, moves left
 - If input = x, moves left
 - If input = _, moves right, go to q₂

- Sample input: 0000
 - Start configuration: q₁0000

 $q_1 0000$ $\sqcup q_2 000$ $\sqcup x q_3 00$ $\sqcup x 0 q_4 0$ $\sqcup x 0 x q_3 \sqcup$ $\sqcup x 0 q_5 x \sqcup$ $\sqcup x q_5 0 x \sqcup$ $\Box q_5 x 0 x \Box q_5 \Box x 0 x \Box$ $\Box q_2 x 0 x \Box$ $\Box x q_2 0 x \Box$ $\Box x x q_3 x \Box$ $\Box x x x q_3 \Box$ $\Box x x q_5 x \Box$

 $\Box xq_5xx\Box$ $\Box q_5xxx\Box$ $q_5\Box xxx\Box$ $\Box q_2xxx\Box$ $\Box xq_2xx\Box$ $\Box xxq_2x\Box$ $\Box xxxq_2x\Box$ $\Box xxxq_2\Box$ $\Box xxxq_2\Box$

- TM of previous lecture which decides the language $B = \{w\#w \mid w \in \{0,1\}^*\}$
- Formal Definition, $M = (Q, \Sigma, \Gamma, \delta, q_0, qaccept, qreject)$
 - $Q = \{q_1, \dots, q_8, q_{accept}, q_{reject}\}$
 - Σ={0,1,#}
 - Γ = {0,1, #, x, _ }
 - We describe δ with a state diagram
 - The start, accept, and reject states are q₁, q_{accept}, and q_{reject}, respectively
- Notation: $a,b \rightarrow D$
 - Reads either a or b
 - Moves in the D direction
- Reject state is not shown
 - Rejects when reading symbol with out a transition

- M_3 decides the language $C = \{a^i b^j c^k \mid i \ x \ j = k \ and \ i, j, k \ge 1\}$
- M₃ = "On input string w:
 - 1. Scan input from left to right to check if single is a member of $a^+ b^+ c^+$
 - Reject if not a member
 - 2. Return head to leftmost end
 - 3. Cross off an a and scan right until a b occurs
 - Go back and forth between b's and c's while crossing off one of each until all b's are gone
 - If all c's are crossed off and some b's remain, reject
 - 4. Restore crossed off b's and repeat stage 3 if there is another a to cross off
 - If all a's are crossed off and all c's are crossed off, accept
 - Otherwise, reject"

M₄ decides the language

 $E = \{ \#x_1 \#x_2 \# \dots \#xl \mid each xi \in \{0,1\} * and xi \neq x_j for each i \neq j \}$

- $M_4 = "On input w:$
 - 1. Place a mark on top of the leftmost tape symbol (ex \ddagger).
 - If that symbol was a black, accept
 - If symbol was a #, continue with the next stage
 - Reject, otherwise
 - 2. Scan right to the next # and place a second mark on top of it
 - If no # is encountered before a blank symbol, only x_1 was present; accept
 - 3. Go back and forth between the two words on the right of the marked hashes
 - If they match reject
 - 4. Move the 2nd mark to the next hash symbol
 - If there is no more hash symbols on the right, then move the 1st hash symbol to its next one
 - Move the 2nd mark to the hash immediately after the 1st
 - If no hashes are available to move to, all words have been compared; accept
 - 5. Return to stage 3"