Turing Machines Variants

Variants of Turing Machines

- Many kinds of variants
 - Multiple tapes or nondeterminism
 - Recognize the same class of languages
- Robustness
 - Invariance of results due to changes in design
 - Turing machines have a large degree of robustness
 - Many choices in design can be changed while still producing the same results
- Example
 - Modify transition function to account for transitions that do not move on tape
 - Does not change language recognized by the TM
 - We can simply convert between the types, which means the language is the same
 - To show that to TM models are equivalent
 - Show that one can simulate the other

Multitape Turing Machines

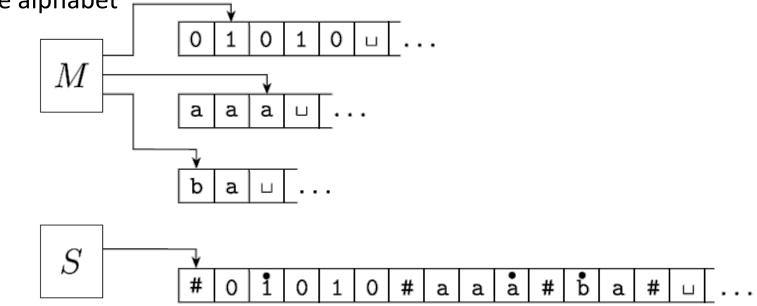
- TM with multiple infinite memory tapes
 - One tape head each
 - Input is initialized to tape 1, with the other tapes blank
- Transition function allows for **some** or **all** of the tapes to move simultaneously $\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$
 - k = number of tapes

$$\delta(q_i, a_1, ..., a_k) = (q_j, b_1, ..., b_k, L, R, ..., L)$$

- Theorem:
 - Every multitape TM has an equivalent single-tape TM
 - Equivalent in power, recognizes the same languages
 - A language is Turing-recognizable iff some multi-tape TM recognizes it

Example: Convert Multi-Tape TM to Single-Tape

- Convert mutitape TM M to single-tape TM S
 - Simulate M with S
- If M has k tapes, S can simulate the effects of k tapes on its single infinite tape.
 - Creates virtual tapes and tape heads
 - Use a special symbol (#) to delimit the sections
 - Add modified tape alphabet symbols used to track the tape head of each section
 - Use a "dotted" version of the tape alphabet



Example: Convert Multiple TM to Single-Tape

- Procedure
 - 1. Given word $w = w_1 \dots w_n$, TM S initializes the following tape contents:

$$\#_{w_1}^{\bullet}w_2 \dots w_n \# _ \# _ \# _ # \dots \#$$

- 2. The tape head takes a single scan pass to determine the location of the "dotted" symbols
- Tape head makes a second pass and updates contents based on <u>transition function of</u> <u>TM M</u>
- 4. If one of the virtual heads moves onto the delimiter symbol (#)
 - Shift all affected tape contents over

Nondeterministic Turing Machines

- TM can be explicitly written nondeterministically
 - Multiple possibilities for the same transition
 - Multiple paths, accept if any path reaches accept state
 - Transition Function

 $\delta: Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$

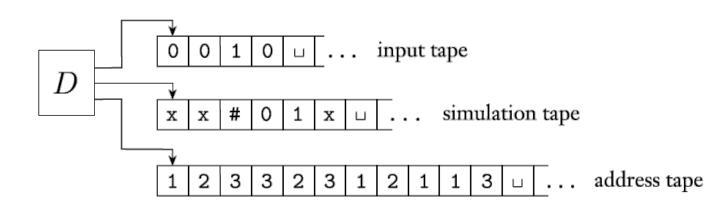
- Theorem
 - Every nondeterministic TM has an equivalent deterministic TM
 - A language is Turing-recognizable iff some nondeterministic TM recognizes it.
- Nondeterministic Decider
 - All branches must halt.
 - A language is Turing-decidable iff some nondeterministic TM decides it.

Example: Nondeterministic TM to Deterministic

- Simulate nondeterministic TM N with a deterministic TM D.
 - D tries all branches of N
 - If D finds any accept branch, D accepts
- Visualize N's computation on an input as a tree
 - D is designed to search tree for an accepting configuration
 - Do not do a **depth-first search** (trace a path 1 at a time)
 - Tracing a path all the way down may never halt.
 - Instead do a breadth-first search (trace all branches to the same depth before going to the next depth level)
 - Guarantees halting if an accept state is reached by any branch

Example: Nondeterministic TM to Deterministic

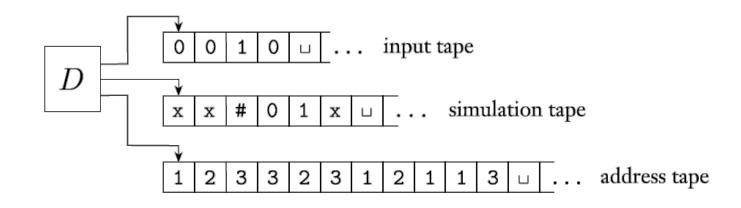
- Deterministic TM D will have 3 tapes:
 - Tape 1: input string, never altered
 - Tape 2: simulation tape, copy of one of N's branch tapes
 - Tape 3: address tape, tracks location on N's computation tree
 - Each number represents which child to continue to from the current node
 - Ex: 231,
 - starting from root node,
 - go to the 2nd child,
 - then from that node, go to the 3rd child
 - Final end at that node's lst child



Example: Nondeterministic TM to Deterministic

• Procedure

- 1. Initialize tape 1 with input, other tapes are blank
- 2. Copy tape 1 to tape 2, initialize tape 3 with ε
- 3. Use tape 2 to simulate a branch of N
 - Use tape 3 and N's computation tree to move along inputs of tape 2
 - If invalid transition is found, go to step 4
 - If all are valid, accept
- 4. Replace string on tape 3 with next string
 - 1. Go back to step 2



Enumerators

- A TM attached to a printer
 - Every time the TM accepts a string it is sent to the printer
- Starts with a blank input on tape
 - If TM does not halt, may print an infinite number of strings
 - L(Enumerator) = all printable words
 - Recursively enumerable language
- Theorem
 - Language is Turing-recognizable iff some enumerator enumerates it.

