
Section 3.2

Variants of Turing Machines
 Many kinds of variants

 Multiple tapes or nondeterminism
 Recognize the same class of languages

 Robustness
 Invariance of results due to changes in design
 Turing machines have a large degree of robustness

 Many choices in design can be changed while still producing the same results

 Example
 Modify transition function to account for transitions that do not move on tape
 Does not change language recognized by the TM

 We can simply convert between the types, which means the language is the same
 To show that to TM models are equivalent

 Show that one can simulate the other

Multitape Turing Machines
 TM with multiple infinite memory tapes

 One tape head each
 Input is initialized to tape 1, with the other tapes blank

 Transition function allows for some or all of the tapes to move simultaneously
δ:𝑄𝑄 × Γ𝑘𝑘 → 𝑄𝑄 × Γ𝑘𝑘 × {𝐿𝐿,𝑅𝑅, 𝑆𝑆}𝑘𝑘

 k = number of tapes
δ 𝑞𝑞𝑖𝑖 , 𝑎𝑎1, … , 𝑎𝑎𝑘𝑘 = (𝑞𝑞𝑗𝑗 , 𝑏𝑏1, … , 𝑏𝑏𝑘𝑘 , 𝐿𝐿,𝑅𝑅, … , 𝐿𝐿)

 Theorem:
 Every multitape TM has an equivalent single-tape TM
 Equivalent in power, recognizes the same languages
 A language is Turing-recognizable iff some multi-tape TM recognizes it

Example: Convert Multi-Tape TM to Single-Tape
 Convert mutitape TM M to single-tape TM S

 Simulate M with S
 If M has k tapes, S can simulate the effects of k tapes on its single infinite tape.

 Creates virtual tapes and tape heads
 Use a special symbol (#) to delimit the sections
 Add modified tape alphabet symbols used to track the tape head of each section

 Use a “dotted” version of the tape alphabet

Example: Convert Multiple TM to Single-Tape
 Procedure

1. Given word w = w1…wn, TM S initializes the following tape contents:
#

•
𝑤𝑤1𝑤𝑤2 …𝑤𝑤𝑛𝑛#

•
⎵#

•
⎵# … #

2. The tape head takes a single scan pass to determine the location of the “dotted” symbols

3. Tape head makes a second pass and updates contents based on transition function of
TM M

4. If one of the virtual heads moves onto the delimiter symbol (#)
 Shift all affected tape contents over

Nondeterministic Turing Machines
 TM can be explicitly written nondeterministically

 Multiple possibilities for the same transition
 Multiple paths, accept if any path reaches accept state

 Transition Function
δ:𝑄𝑄 × Γ → 𝒫𝒫(𝑄𝑄 × Γ × 𝐿𝐿,𝑅𝑅)

 Theorem
 Every nondeterministic TM has an equivalent deterministic TM
 A language is Turing-recognizable iff some nondeterministic TM recognizes it.

 Nondeterministic Decider
 All branches must halt.
 A language is Turing-decidable iff some nondeterministic TM decides it.

Example: Nondeterministic TM to Deterministic
 Simulate nondeterministic TM N with a deterministic TM D.

 D tries all branches of N

 If D finds any accept branch, D accepts

 Visualize N’s computation on an input as a tree
 D is designed to search tree for an accepting configuration

 Do not do a depth-first search (trace a path 1 at a time)
 Tracing a path all the way down may never halt.

 Instead do a breadth-first search (trace all branches to the same depth before going to the next
depth level)
 Guarantees halting if an accept state is reached by any branch

 Deterministic TM D will have 3 tapes:
 Tape 1: input string, never altered

 Tape 2: simulation tape, copy of one of N’s branch tapes

 Tape 3: address tape, tracks location on N’s computation tree
 Each number represents which child to continue to from the current node

 Ex: 231,
 starting from root node,
 go to the 2nd child,
 then from that node, go to the 3rd child
 Final end at that node’s lst child

Example: Nondeterministic TM to Deterministic

 Procedure
1. Initialize tape 1 with input, other tapes are blank

2. Copy tape 1 to tape 2, initialize tape 3 with ε

3. Use tape 2 to simulate a branch of N
 Use tape 3 and N’s computation tree to move along inputs of tape 2
 If invalid transition is found, go to step 4
 If all are valid, accept

4. Replace string on tape 3
with next string

1. Go back to step 2

Example: Nondeterministic TM to Deterministic

Enumerators
 A TM attached to a printer

 Every time the TM accepts a string it is sent to the printer

 Starts with a blank input on tape
 If TM does not halt, may print an infinite number of strings

 L(Enumerator) = all printable words
 Recursively enumerable language

 Theorem
 Language is Turing-recognizable

iff some enumerator enumerates it.

	Turing Machines Variants
	Variants of Turing Machines
	Multitape Turing Machines
	Example: Convert Multi-Tape TM to Single-Tape
	Example: Convert Multiple TM to Single-Tape
	Nondeterministic Turing Machines
	Example: Nondeterministic TM to Deterministic
	Example: Nondeterministic TM to Deterministic
	Example: Nondeterministic TM to Deterministic
	Enumerators

