Undecidability Section 4.2

Algorithmically Unsolvable Problems

- Many problems are unsolvable by computers
 - Many tasks that seem simple, may be computationally impossible
- Previously, we have used TM to show that a problem is solvable
 - Encode a problem as a language
 - If a TM is created that can decide the language, it is solvable.
- Now we introduce techniques to show that a problem is unsolvable.

An Undecidable Problem

- Problem: Is it possible to determine whether a Turing Machine accepts a given input string?
- Formulate this problem as a language A_{TM} = {<M,w>|M is a TM and M accepts w}.
- This language is recognizable by creating a TM that simulates M
 - U = "On input <M,w>, where M is a TM and w is a string:
 - 1. Simulate M on input w
 - 2. If M enters an accept state, accept. If it enters a reject state, reject.
 - U loops if M loops
 - Not guaranteed to halt, therefore is not a decider
- U is a Universal Turing Machine
 - A TM that is capable of simulating any other TM

Correspondence

- In order to show that not every problem is computable
 - Assume that for every unique problem, a unique TM must be created to solve it
 - This means the set of all problems, $S_{\rm p}$, must be the same size of the set of all Turing Machines, $S_{\rm TM}$
- Both sets are infinite but one may be larger than the other
 - For sets to be the same size, there must be a correspondence (bijective) between every element in each set.
 - One-to-one (injective)
 - Onto (surjective)

Countable Set

- If a set has a correspondence to the set of natural numbers N, that set is said to be countable
- If we cannot find a correspondence to N, then the set is uncountable
 - Uncountable sets are larger than countable sets.

Example: Countable Set

- Show that the set of even numbers, E, is countable
- Show correspondence between E and N
 f(n) = 2n
- E is countable

n	f(n)
1	2
2	4
3	6
•••	

Example: Uncountable Set

• Show that the set of real numbers, R, is uncountable

Procedure	n	f(n)
 Systematically construct a list for R The index of each element in the list corresponds to an element in N Find an element x in R that is cannot be the list 	1	3. <u>1</u> 4159
• Find an element, x, in K that is cannot be the list • Diagonalization method • Choose the digits for x so that $x \neq f(n)$ for any n	2	55.5 <u>5</u> 555
	3	0.12 <u>3</u> 45
For the following list, choose a number that is different from the diagonal	4	0.500 <u>0</u> 0
 Uses each digit to mismatch the corresponding element For x ≠ f(1), 1st digit must be different For x ≠ f(n), nth digit must be different 	•••	••••

• x = 0.4641...

Uncountable Number of Languages

- Since there are problems related to real numbers, the set of all problems S_p is uncountable
- The set of all TMs S_{TM} can be listed and is countable
- This means is S_p larger than S_{TM}
 - and that there are problems without a corresponding TM

- Problem: Is it possible to determine whether a TM accepts a given input string?
- Formulate this problem as a language $A_{TM} = \{\langle M, w \rangle | M \text{ is a TM and M accepts } w\}$.
 - Assume that A_{TM} is decidable and obtain a contradiction
 - Create a decider H for A_{TM} :

$$H(\langle M, w \rangle) = \begin{cases} accept & if \ M \ accepts \ w \\ reject & if \ M \ does \ not \ accept \ w \end{cases}$$

- Create a TM D with H as a subroutine
 - D = "On input <M>, where M is a TM:
 - 1. Run H on input <M,<M>>.
 - 2. Output the opposite of what H outputs. That is, if H accepts, reject; and if H rejects, accept."

- Is it possible to determine whether a Turing Machine accepts a given input string?
- Formulate this problem as a language $A_{TM} = \{\langle M, w \rangle | M \text{ is a TM and M accepts w} \}$.
 - Assume that A_{TM} is decidable and obtain a contradiction
 - Create a decider H for A_{TM} :

$$H(\langle M, w \rangle) = \begin{cases} accept & if \ M \ accepts \ w \\ reject & if \ M \ does \ not \ accept \ w \end{cases}$$

Create a TM D to <u>simulate diagonalization</u> with H as a subroutine.

- D does the opposite what M does when it receives itself as an input
- D = "On input <M>, where M is a TM:
 - 1. Run H on input <M,<M>>.
 - 2. Output the opposite of what H outputs. That is, if H accepts, reject; and if H rejects, accept."

D always does the opposite

$$D(\langle M \rangle) = \begin{cases} accept \\ reject \end{cases}$$

if M does not accept < M > if M accepts < M >

If D receives itself, then

 $D(< D >) = \begin{cases} accept \\ reject \end{cases}$

if D does not accept < D > if D accepts < D >

• This is a contradiction, and we can use diagonalization to see this

 Create a table of TMs and their encode versions: 							M_{*}	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	•••
• Output of H:	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$		_	M_1 M_2	accept	accept	accept	accept	
• M 	$\begin{array}{c c}1 & accept\\ \hline 2 & accept\end{array}$	reject $accept$	$accept \\ accept$	reject accept			M_3 M_4	accept	accept			
M M	$_{3}$ reject	reject accent	reject reject	reject reject			:	1	-			
:	4 000000	accept		, ejeet								

Since D itself is a TM it will be on the list and will be the opposite of the diagonals

- When we reach (D,<D>), we get a contradiction
- This means that such a TM does not exist
 - A_{TM} is undecidable

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$		$\langle D \rangle$	
M_1	accept	reject	accept	reject		accept	
M_2	\overline{accept}	accept	accept	accept		accept	
M_3	reject	reject	reject	reject		reject	
M_4	accept	accept	\overline{reject}	reject		accept	
÷		:	ŀ		·		
D	reject	reject	accept	accept		?	
÷		:					·