
Section 4.2



Algorithmically Unsolvable Problems
 Many problems are unsolvable by computers

 Many tasks that seem simple, may be computationally impossible

 Previously, we have used TM to show that a problem is solvable

 Encode a problem as a language

 If a TM is created that can decide the language, it is solvable.

 Now we introduce techniques to show that a problem is unsolvable.



An Undecidable Problem
 Problem: Is it possible to determine whether a Turing Machine accepts a given input string?

 Formulate this problem as a language ATM = {<M,w>|M is a TM and M accepts w}.

 This language is recognizable by creating a TM that simulates M
 U = “On input <M,w>, where M is a TM and w is a string:

 1. Simulate M on input w
 2. If M enters an accept state, accept.  If it enters a reject state, reject.

 U loops if M loops
 Not guaranteed to halt, therefore is not a decider

 U is a Universal Turing Machine
 A TM that is capable of simulating any other TM



Correspondence
 In order to show that not every problem is computable

 Assume that for every unique problem, a unique TM must be created to solve it

 This means the set of all problems, Sp, must be the same size of the set of all 
Turing Machines, STM

 Both sets are infinite but one may be larger than the other

 For sets to be the same size, there must be a correspondence (bijective) between 
every element in each set.

 One-to-one (injective)

 Onto (surjective)



Countable Set
 If a set has a correspondence to the set of natural numbers N, that set is said 

to be countable

 If we cannot find a correspondence to N, then the set is uncountable

 Uncountable sets are larger than countable sets.



Example: Countable Set
 Show that the set of even numbers, E, is countable

 Show correspondence between E and N

 f(n) = 2n

 E is countable

n f(n)

1 2

2 4

3 6

… …



Example: Uncountable Set
 Show that the set of real numbers, R, is uncountable

 Procedure
 Systematically construct a list for R

 The index of each element in the list corresponds to an element in N

 Find an element, x, in R that is cannot be the list
 Diagonalization method

 Choose the digits for x so that x ≠ f(n) for any n

 For the following list, choose a number that is different from 
the diagonal
 Uses each digit to mismatch the corresponding element
 For x ≠ f(1), 1st digit must be different
 For x ≠ f(n), nth digit must be different

 x = 0.4641…

n f(n)

1 3.14159…

2 55.55555…

3 0.12345…

4 0.50000…

… …



Uncountable Number of Languages
 Since there are problems related to real numbers, the set of all problems Sp is 

uncountable

 The set of all TMs STM can be listed and is countable

 This means is Sp larger than STM 

 and that there are problems without a corresponding TM



Example: An Undecidable Language
 Problem: Is it possible to determine whether a TM accepts a given input string?

 Formulate this problem as a language ATM = {<M,w>|M is a TM and M accepts w}.
 Assume that ATM is decidable and obtain a contradiction

 Create a decider H for ATM :

𝐻 < 𝑀, 𝑤 > = ቊ
𝑎𝑐𝑐𝑒𝑝𝑡 𝑖𝑓 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤 
𝑟𝑒𝑗𝑒𝑐𝑡 𝑖𝑓 𝑀 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑎𝑐𝑐𝑒𝑝𝑡 𝑤

 Create a TM D with H as a subroutine
 D = “On input <M>, where M is a TM:

1. Run H on input <M,<M>>.

2. Output the opposite of what H outputs.  That is, if H accepts, reject; and if H rejects, accept.”



Example: An Undecidable Language
 Is it possible to determine whether a Turing Machine accepts a given input string?

 Formulate this problem as a language ATM = {<M,w>|M is a TM and M accepts w}.
 Assume that ATM is decidable and obtain a contradiction

 Create a decider H for ATM :

𝐻 < 𝑀, 𝑤 > = ቊ
𝑎𝑐𝑐𝑒𝑝𝑡 𝑖𝑓 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤 
𝑟𝑒𝑗𝑒𝑐𝑡 𝑖𝑓 𝑀 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑎𝑐𝑐𝑒𝑝𝑡 𝑤

 Create a TM D to simulate diagonalization with H as a subroutine. 
 D does the opposite what M does when it receives itself as an input

 D = “On input <M>, where M is a TM:
1. Run H on input <M,<M>>.

2. Output the opposite of what H outputs.  That is, if H accepts, reject; and if H rejects, accept.”



Example: An Undecidable Language
 D always does the opposite

𝐷 < 𝑀 > = ቊ
𝑎𝑐𝑐𝑒𝑝𝑡 𝑖𝑓 𝑀 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑎𝑐𝑐𝑒𝑝𝑡 < 𝑀 >
𝑟𝑒𝑗𝑒𝑐𝑡 𝑖𝑓 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 < 𝑀 > 

 If D receives itself, then 

𝐷 < 𝐷 > = ቊ
𝑎𝑐𝑐𝑒𝑝𝑡 𝑖𝑓 𝐷 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑎𝑐𝑐𝑒𝑝𝑡 < 𝐷 >
𝑟𝑒𝑗𝑒𝑐𝑡 𝑖𝑓 𝐷 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 < 𝐷 > 

 This is a contradiction, and we can use diagonalization to see this



Example: An Undecidable Language
 Create a table of TMs and their encode versions:

 Output of H:

 Since D itself is a TM it will be on the list and will be the opposite of the diagonals

 When we reach (D,<D>), we get a contradiction

 This means that such a TM does not exist

 ATM is undecidable
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