Language Operations

Language Operations

- Operations that can be used to construct languages from other languages
- Since languages are sets, we can use set operations:
 - Union,
 - Intersection
 - Complement
 - Set difference
- Additional operations that strictly deal with strings
 - Concatenation
 - Star
- Example
 - $A = \{good, bad\}$
 - B = {boy, girl}

- $A \cup B = \{\texttt{good}, \texttt{bad}, \texttt{boy}, \texttt{girl}\},$
- $A \circ B = \{\texttt{goodboy}, \texttt{goodgirl}, \texttt{badboy}, \texttt{badgirl}\}, \text{and}$
- $A^* = \{\varepsilon, \text{good, bad, goodgood, goodbad, badgood, badbad, goodgood, goodgood, goodbad, goodbadgood, goodbadbad, \dots\}.$

Closure of Regular Languages (FA-recognizable)

- The set of FA-recognizable languages is **closed** under all six string operations.
 - If we start with regular languages and apply the operations, a new regular language is created.
 - May not work with previous finite automata but will for some finite automata
- Theorem 1:
 - FA-recognizable languages are closed under complement
- Proof:
 - Start with a language L_1 over alphabet Σ , recognized by some FA, M_1
 - Produce another FA, M_2 , with $L(M_2) = \Sigma^* L(M_1)$.
 - Just interchange accepting and non-accepting states
 - The new language is recognized by a finite automata and is considered FA-recognizable

Complement of Example 1

- Theorem 1: FA-recognizable languages are closed under complement
- Proof: Interchange accepting and non-accepting states
- Example: FA for { w | w does not contain 111 }

• Start with FA for { w | w contains 111 }:

- Only accepted strings with 111 substring
- Convert to complement language

Complement of Example 1

- Example: FA for { w | w does not contain 111 }
 - Interchange accepting and non-accepting states

- States a,b, and c become accept states
- State d becomes a non-accept state
- Only way to reach d is to have a string with a 111 substring.
 - New FA only recognizes strings that do <u>not</u> have a 111 substring

Closure under Intersection

• Theorem 2: FA-Recognizable languages are closed under **intersection**

• Proof

- Start with FAs M_1 and M_2 for the same alphabet Σ
- Get another FA, M_3 , with $L(M_3) = L(M_1) \cap L(M_2)$
- Reasoning
 - Run M₁ and M₂ "in parallel" on the same input
 - If <u>both</u> reach accepting states, accept
- Example
 - L(M₁): Contains substring or
 - L(M₂): Contains an odd number of ones
 - L(M₃): Contains oi <u>and</u> has an odd number of is

Closure under Intersection

M₁: Substring 01

- Only accept string if both accept
- Symbols combine to become new states
 - $\Sigma_1 = \{a, b, c\}$
 - $\Sigma_2 = \{d, e\}$
 - $\Sigma_3 = \{ad, ae, bd, be, cd, ce\}$

0

а

b

0.1

Closure under Intersection

- New Formal Definition
 - $M_1 = (Q_1, \Sigma_1, \delta_1, q_{01}, F_1)$
 - $M_2 = (Q_2, \Sigma_2, \delta_2, q_{02}, F_2)$
- Define $M_3 = (Q_3, \Sigma_3, \delta_3, q_{03}, F_3)$, where
 - $Q_3 = Q_1 \times Q_2$
 - Cartesian Product, { $(q_1,q_2) \mid q_1 \in Q_1 \text{ and } q_2 \in Q_2$ }
 - $\Sigma_3 = \{0,1\}$
 - $\delta_3((q_1,q_2),a) = (\delta_1(q_1,a), \delta_2(q_2,a))$
 - $q_{o_3} = (q_{o_1}, q_{o_2})$
 - $F_3 = F_1 \times F_2 = \{ (q_1, q_2) \mid q_1 \in F_1 \text{ and } q_2 \in F_2 \} \}$

Closure under Union

• Theorem 3: FA-Recognizable languages are closed under **union**

• Proof

- Similar to intersection
- Start with FAs M_1 and M_2 for the same alphabet Σ
- Get another FA, M_3 , with $L(M_3) = L(M_1) \cup L(M_2)$
- Reasoning
 - Run M₁ and M₂ "in parallel" on the same input
 - If <u>either</u> reach accepting states, accept
- Example
 - L(M₁): Contains substring or
 - L(M₂): Contains an odd number of ones
 - L(M₃): Contains or <u>or</u> has an odd number of 1s

Closure under Union

M₁: Substring 01

• Symbols combine to become new states

•
$$\Sigma_1 = \{a,b,c\}$$

- $\Sigma_2 = \{d, e\}$
- $\Sigma_3 = \{ad, ae, bd, be, cd, ce\}$
- New states = accept if ordered pair contains old accepting state

0

а

b

0,1

Closure under Union

- New Formal Definition
 - $M_1 = (Q_1, \Sigma_1, \delta_1, q_{01}, F_1)$
 - $M_2 = (Q_2, \Sigma_2, \delta_2, q_{02}, F_2)$
- Define $M_3 = (Q_3, \Sigma_3, \delta_3, q_{03}, F_3)$, where
 - $Q_3 = Q_1 \times Q_2$
 - Cartesian Product, { $(q_1,q_2) \mid q_1 \in Q_1 \text{ and } q_2 \in Q_2$ }
 - $\Sigma_3 = \{0,1\}$
 - $\delta_3((q_1,q_2),a) = (\delta_1(q_1,a), \delta_2(q_2,a))$
 - $q_{o_3} = (q_{o_1}, q_{o_2})$
 - $F_3 = \{ (q_1, q_2) \mid q_1 \in F_1 \text{ or } q_2 \in F_2 \} \}$

Closure under Set Difference

- Theorem 4
 - FA-Recognizable languages are closed under set difference
- Proof
 - Similar proof to those for union and intersection
 - Accept if L₁ accepts <u>and</u> L₂ does not
 - Alternatively
 - Since $L_1 L_2$ is the same as $L_1 \cap (L_2)^c$, just apply Theorems 1 and 2

Closure under Concatenation

- Theorem 5: FA-Recognizable Languages are Closed under concatenation
- Proof
 - Start with FAs M_1 and M_2 for the same alphabet Σ
 - Get another FA, M₃, with
 - $L(M_3) = L(M_1) \circ L(M_2) = \{ x_1 x_2 \mid x_1 \in L(M_1) \text{ and } x_2 \in L(M_2) \}$
- Reasoning
 - Attach accepting states of M1 somehow to the start state of M₂
 - Don't know when string is done with M_1 portion of M_3
 - Careful as string may go through accepting states of M₁ several times

Closure under Concatenation

- Example
 - $\Sigma = \{0,1\}, L_1 = \Sigma^*, L_2 = \{0\}\{0\}^*$ (just zeros, at least one)
 - L_1L_2 = Strings that end with a block of at least one o

- How to combine?
 - Need to "guess" when to shift to M₂
 - Leads to our next model, Nondeterministic Finite Automata
 - FAs that can guess
- Closure under star operation is an extension of this.