
Section 1.2



Summary
 Nondeterministic Finite Automata
 View FA as tree graph
 NFA vs DFA
 Closure under concatenation using NFA
 Closure under star using NFA



Deterministic Finite Automata
 All the previous examples are deterministic

computation
 At every state, there is at most 1 edge related to a 

particular input symbol
 One path for each input

 Nondeterministic computation
 Several choices may exist for the next state at 

any point
 Every deterministic FA (DFA) is a 

nondeterministic FA (NFA)
 Not Vice Versa



Nondeterministic Finite Automata
 DFA can be generalized by adding nondeterminism

 Allow several alternative computations on the same 
input string

 Two changes:
1. Allow transition function, δ(q,a), to specify more 

than one successor state:

2. Add ε-transitions (empty strings)
 Transitions made “for free”, without “consuming” any input 

symbols.



How NFAs compute
 Since transitions of states is unknown, parallel processing of multiple copies of the 

NFA is necessary
 Can be considered in multiple states at once at every input symbol.

 Follow allowed arrows in any possible way
 “Consumes” the designated input symbols at after each arrow
 New paths are followed after every split

 All paths run in parallel
 If there is no arrow for the next input symbol, path is terminated.

 Optionally follow any ε-arrow at any time, without “consuming” any input.
 Creates another path

 Accepts a string if some allowed sequence of transitions on that string leads to an 
accepting state.



 An NFA can be formally defined as a 5-tuple 
(Q,Σ,δ,q0,F), where:
 Q is a finite set of states
 Σ is a finite set (alphabet) of input symbols

 δ: Q x Σε→ P(Q) is the transition function 

 q0 ∈ Q, is the start state
 F ⊆ Q, set of accept states

Formal Definition of an NFA

 P(Q): powerset of Q
 The set of all subsets of Q
 Can be in multiple states at once

 How many states in P(Q)?

 Example:
 Q = {a,b,c}
 P(Q) = { {}, {a}, {b}, {c}, {a,b}, 

{a,c}, {b,c}, {a,b,c} }

Presenter Notes
Presentation Notes
Can reduce definition of an NFA to a DFATransition function states that we may end up in any state in a set of states



Formal Definition of Computation for NFA

 δ*(q,w) = States that can be reached from q by following string w

 String w is accepted if 𝛿𝛿∗(𝑞𝑞, 𝑤𝑤) ∩ 𝐹𝐹 ≠ ∅
 F = set of accept states
 At least one of the possible end states is an accepting state

 Rejected otherwise

 𝐿𝐿 𝑀𝑀 = {𝑤𝑤|𝑤𝑤 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏 𝑀𝑀}
 Language recognized by NFA M



NFA Example 1

 ε is now a column

 Now being mapped to sets of states

 Example
 Q = {a,b,c}
 Σ = {0,1}
 δ: Q x Σε→ P(Q) is the transition 

function 
 q0 = a, is the start state
 F = {c}

0 1 ε

a {a,b} {a} ∅

b ∅ {c} ∅

c ∅ ∅ ∅



NFA Example 1
 L(M) = {w | w ends with 01}

 M accepts exactly the strings in this set

 Example Input String
 Computations for input word w = 101:

 Many Combinations, some listed below

 Since c is an accepting state, M accepts 101

0 1 ε

a {a,b} {a} ∅

b ∅ {c} ∅

c ∅ ∅ ∅

Input 
Word w 1 0 1

Path 1 a a a

Path 2 a b c



NFA Example 1
 Computations for input word w = 0010:

 Possible states after 0 input: {a,b}
 After another 0: {a,b}
 After 1: {a,c}

 After the 1 input, state is either c or a.
 Since 0 cannot be consumed at c, 

 Path is terminated
 After final 0: {a,b}

 Neither a nor b are accepting states
 M does not accept 0010

 𝑎𝑎 0
→{𝑎𝑎, 𝑏𝑏} 0

→{𝑎𝑎, 𝑏𝑏} 1
→{𝑎𝑎, 𝑎𝑎} 0

→ {𝑎𝑎, 𝑏𝑏}

0 1 ε

a {a,b} {a} ∅

b ∅ {c} ∅

c ∅ ∅ ∅



NFA Example 2
0 1 ε

a {a} {a} {b,e}

b {c} ∅ ∅

c ∅ {d} ∅

d ∅ ∅ ∅

e ∅ {f} ∅

f {g} ∅ ∅

g ∅ ∅ ∅



NFA Example 2
 L(M)={ w | w ends with 01 or 10 }
 Computations for w = 0010

 Possible states after no input: {a,b,e}
 After 0: {a,b,e,c} 
 After 0: {a,b,e,c}
 After 1: {a,b,e,d,f}
 After 0: {a,b,e,c,g}
 Since g is an accepting state

 M accepts 0010

 𝑎𝑎, 𝑏𝑏, 𝑎𝑎 0
→{𝑎𝑎, 𝑏𝑏, 𝑎𝑎, 𝑎𝑎} 0

→{𝑎𝑎, 𝑏𝑏, 𝑎𝑎, 𝑎𝑎} 1
→{𝑎𝑎, 𝑏𝑏, 𝑎𝑎, 𝑎𝑎, 𝑓𝑓} 0

→ {𝑎𝑎, 𝑏𝑏, 𝑎𝑎, 𝑎𝑎, 𝑔𝑔}

 Path to accepting state

 𝑎𝑎 0
→𝑎𝑎 0

→𝑎𝑎 ε
→𝑎𝑎 1

→𝑓𝑓 0
→𝑔𝑔



Viewing Computations as a Tree
 Every input string of a NFA can 

be viewed as a Tree

 Sample input string: 010110



Viewing Computations as a Tree

 Input w = 01


	Nondeterminism
	Summary
	Deterministic Finite Automata
	Nondeterministic Finite Automata
	How NFAs compute
	Formal Definition of an NFA
	Formal Definition of Computation for NFA
	NFA Example 1
	NFA Example 1
	NFA Example 1
	NFA Example 2
	NFA Example 2
	Viewing Computations as a Tree
	Viewing Computations as a Tree

