### Nondeterminism

### Summary

- Nondeterministic Finite Automata
- View FA as tree graph
- NFA vs DFA
- Closure under concatenation using NFA
- Closure under star using NFA

#### **Deterministic Finite Automata**

- All the previous examples are **deterministic** computation
  - At every state, there is at most 1 edge related to a particular input symbol
  - One path for each input
- Nondeterministic computation
  - Several choices may exist for the next state at any point
  - Every deterministic FA (DFA) is a nondeterministic FA (NFA)
    - Not Vice Versa



### Nondeterministic Finite Automata

- DFA can be generalized by adding nondeterminism
  - Allow several alternative computations on the same input string
- Two changes:
  - 1. Allow **transition function**,  $\delta(q,a)$ , to specify more than one successor state:



- 2. Add ε-transitions (empty strings)
  - Transitions made "for free", without "consuming" any input symbols.



#### How NFAs compute

- Since transitions of states is unknown, parallel processing of multiple copies of the NFA is necessary
  - Can be considered in multiple states at once at every input symbol.
- Follow allowed arrows in any possible way
  - "Consumes" the designated input symbols at after each arrow
  - New paths are followed after every split
    - All paths run in parallel
    - If there is no arrow for the next input symbol, path is terminated.
- Optionally follow any **ε-arrow** at any time, without "consuming" any input.
  - Creates another path
- Accepts a string if <u>some</u> allowed sequence of transitions on that string leads to an accepting state.

# Formal Definition of an NFA

- An NFA can be formally defined as a 5-tuple  $(Q,\Sigma,\delta,q_o,F)$ , where:
  - Q is a finite set of states
  - Σ is a finite set (alphabet) of input symbols

#### • $\delta: Q \times \Sigma_{\varepsilon} \to P(Q)$ is the **transition function**

The arguments are a state and either an alphabet symbol or  $\epsilon$ .  $\Sigma_{\epsilon}$  means  $\Sigma \cup \{\epsilon\}$ .

Ę

The result is a set of states.

- $q_o \in Q$ , is the start state
- $F \subseteq Q$ , set of accept states

- P(Q): powerset of Q
  - The set of all subsets of Q
  - Can be in multiple states at once
- How many states in P(Q)?
- Example:
  - $Q = \{a, b, c\}$
  - P(Q) = { {}, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c} }

#### Formal Definition of Computation for NFA

- $\delta^*(q,w)$  = States that can be reached from q by following string w
- String w is accepted if  $\delta^*(q, w) \cap F \neq \emptyset$ 
  - F = set of accept states
  - <u>At least one</u> of the possible end states is an accepting state
    - Rejected otherwise
- $L(M) = \{w | w \text{ is accepted by } M\}$ 
  - Language recognized by NFA M

- ε is now a column
- Now being mapped to sets of states
- Example
  - $Q = \{a, b, c\}$
  - $\Sigma = \{0,1\}$
  - $\delta: \mathbf{Q} \times \Sigma_{\varepsilon} \to \mathbf{P}(\mathbf{Q})$  is the **transition** function
  - q<sub>o</sub> = a, is the start state
  - $F = \{c\}$





- $L(M) = \{w \mid w \text{ ends with } oi\}$ 
  - M accepts exactly the strings in this set
- Example Input String
  - Computations for input word w = 101:
    - Many Combinations, some listed below

| Input<br>Word w | 1 | 0 | 1 |
|-----------------|---|---|---|
| Path 1          | a | a | а |
| Path 2          | а | b | С |

• Since c is an accepting state, M accepts 101





- Computations for input word w = 0010:
  - Possible states after o input: {a,b}
    - After another o: {a,b}
    - After 1: {a,c}
      - After the 1 input, state is either c or a.
      - Since o cannot be consumed at c,
        - Path is terminated
    - After final o: {a,b}
  - Neither a nor b are accepting states
    - M does not accept 0010

• 
$$\{a\} \xrightarrow{0} \{a, b\} \xrightarrow{0} \{a, b\} \xrightarrow{1} \{a, c\} \xrightarrow{0} \{a, b\}$$







|   | ο   | 1            | 3     |
|---|-----|--------------|-------|
| a | {a} | {a}          | {b,e} |
| Ь | {c} | Ø            | Ø     |
| с | Ø   | {d}          | Ø     |
| d | Ø   | Ø            | Ø     |
| е | Ø   | { <b>f</b> } | Ø     |
| f | {g} | Ø            | Ø     |
| g | Ø   | Ø            | Ø     |

- L(M)={ w | w ends with 01 or 10 }
- Computations for w = 0010
  - Possible states after <u>no input</u>: {a,b,e}
  - After o: {a,b,e,c}
  - After o: {a,b,e,c}
  - After 1: {a,b,e,d,f}
  - After o: {a,b,e,c,g}
  - Since g is an accepting state
    - M accepts 0010

• 
$$\{a, b, e\} \xrightarrow{0} \{a, b, e, c\} \xrightarrow{0} \{a, b, e, c\} \xrightarrow{1} \{a, b, e, d, f\} \xrightarrow{0} \{a, b, e, c, g\}$$

Path to accepting state

• 
$$a \stackrel{0}{\rightarrow} a \stackrel{0}{\rightarrow} a \stackrel{\varepsilon}{\rightarrow} e \stackrel{1}{\rightarrow} f \stackrel{0}{\rightarrow} g$$



## Viewing Computations as a Tree

- Every input string of a NFA can be viewed as a Tree
- Sample input string: 010110





#### Viewing Computations as a Tree

