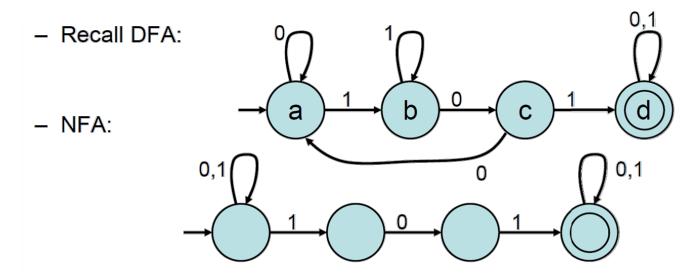
NFA vs DFA

Nondeterministic FA vs Deterministic FA

- NFA can be easier to construct
 - NFA diagrams are usually smaller than DFA
 - NFA states may be easier to understand
- NFA and DFA can recognize the same languages
 - If a language is DFA-recognizable it is also NFA-recognizable <u>and</u> vice versa.
 - Two machines are **equivalent** if they recognize the same language.
- Theorem: Every NFA has an equivalent DFA
 - NFA can always be converted into DFA
 - DFA may have many more states

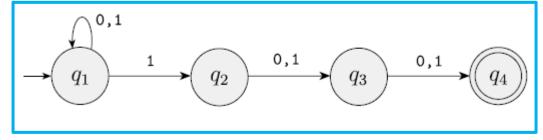
NFA vs DFA

- NFAs and DFAs have same power
 - NFAs can be "simpler" than equivalent DFAs
- Example: L = Strings having substring 101
- NFA "guesses" by following a path that goes through those states
 - Easier to see the required 101 pattern

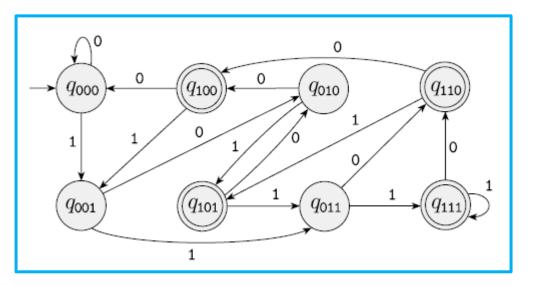


NFA vs DFA diagram

- Let A be the language consisting of binary strings with a
 - 1 in the 3rd position from the end
- NFA that recognizes A

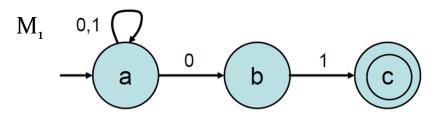


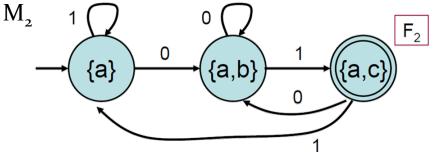
• DFA that recognizes A



Example: NFA to DFA

- Convert NFA M₁ to DFA M₂
- List all possible states M₂
 - Powerset P(Q) where Q = {a,b,c}
 - $P(Q) = \{ \{\}, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\} \}$
 - Each set is now a state
- Determine start and accept states of M₂
 - q_o = {a} and any state with c is an accept state.
- Determine the transition function of M₂
 - δ(p, a) = set of all states that are reachable from p by traveling along edge with symbol a in M₁
 - p maybe multiple states in a
 - Draw new node and edge in diagram or note in transition table
- Remove/ignore unreachable elements in P(Q)

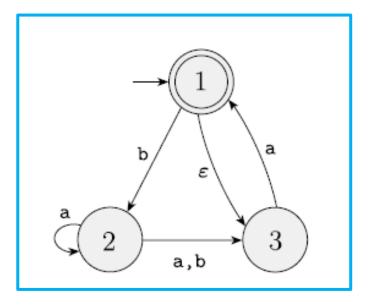




Example 2: NFA to DFA

• NFA *N* with $Q_N = \{1, 2, 3\}$

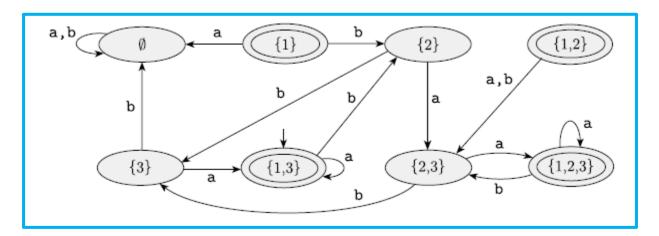
- Corresponding states for DFA *D*
 - $Q_D = \{ \{\}, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \}.$

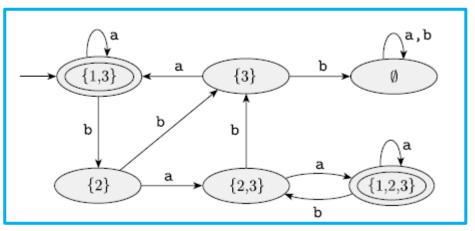


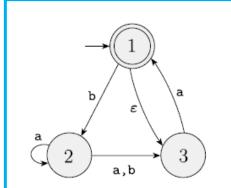
- Determine start state E{1}
 - E({a}) = set of all states that are reachable from a by traveling along ε-arrows, plus a itself
 - Start state: {1,3}
- Determine accept states
 - $F_D = \{ \{1\}, \{1,2\}, \{1,3\}, \{1,2,3\} \}$

Example 2: NFA to DFA

• Determine *D*'s transition function with table or diagram



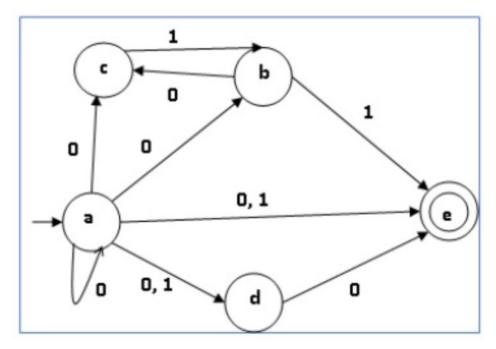




- 1. Create NFA state table from the given NFA
- 2. Create a blank DFA state table under possible input alphabets for the equivalent DFA
- 3. Mark the start state of DFA qo = E[q] as current state
 - q + states after ε-transitions
- 4. Find the set of all NFA states that are reachable from the current DFA state
- 5. Each time we generate a new DFA state under the input alphabet return to step 5
- 6. When no new edges can be created
 - Draw diagram and mark all reachable accept states

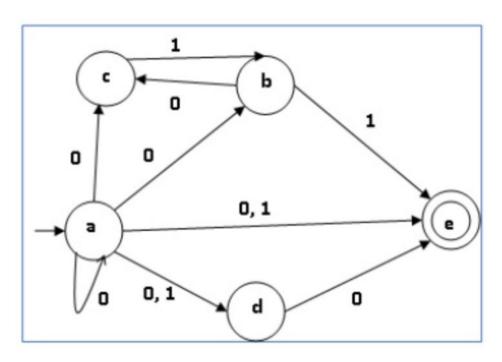
• Step 1: Create state table from given NFA diagram

NFA: q	δ(q,o)	δ(q,1)	
a	{a,b,c,d,e}	{d,e}	
b	{c}	{e}	
С	Ø	{b}	
d	{e}	Ø	
e	Ø	Ø	



• Steps 2-5: Create DFA table, start state, find all transitions

DFA: q	δ(q,o)	δ(q,1)
{a}	$\{a,b,c,d,e\}$	{d,e}
$\{a,b,c,d,e\}$	$\{a,b,c,d,e\}$	{b,d,e}
{d,e}	{e}	Ø
{b,d,e}	{c,e}	{e}
{e}	Ø	Ø
{c,e}	Ø	{b}
{b}	{c}	{e}
{c}	Ø	{b}

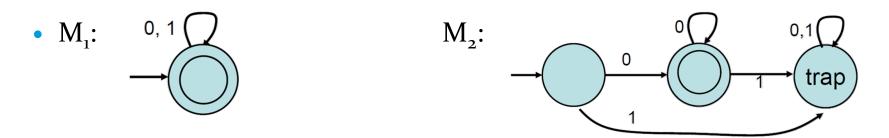


• Steps 6: Draw transition diagram and mark accept states

DFA: q	δ(q,o)	δ(q,1)	
{a}	{a,b,c,d,e}	{d,e}	C °
{a,b,c,d,e}	{a,b,c,d,e}	{b,d,e}	$[a,b,c,d,e] \xrightarrow{1} [b,d,e] \xrightarrow{0} [c,e]$
{d,e}	{e}	Ø	0
{b,d,e}	{c,e}	{e}	
{e}	Ø	Ø	1 1 0 1
{c,e}	Ø	{b}	↓ 0 [d,e] ↓ [e] ↓ [c]
{b}	{c}	{e}	
{c}	Ø	{b}	

DFA Closure under Concatenation

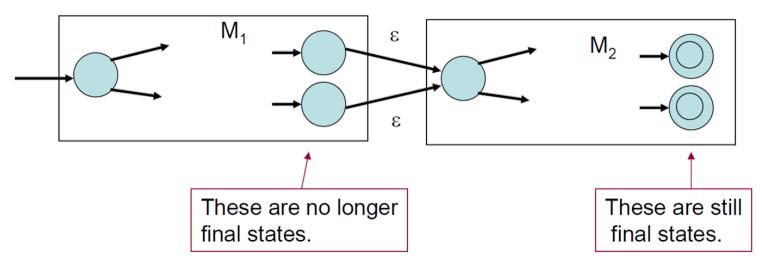
- Example
 - $\Sigma = \{0,1\}, L_1 = \Sigma^*, L_2 = \{0\}\{0\}^*$ (just zeros, at least one)
 - L_1L_2 = Strings that end with a block of at least one o



- How to combine?
 - Need to "guess" when to shift to M₂
 - Leads to our next model, Nondeterministic Finite Automata
 - FAs that can guess
- Closure under star operation is an extension of this.

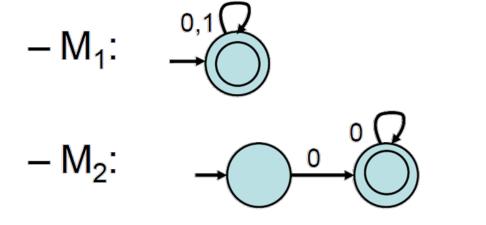
NFA Closure under Concatenation

- $L_3 = L_1 \circ L_2 = \{xy | x \in L_1 \text{ and } y \in L_2\}$
- Start with NFAs M₁ and M₂
 - Start state of M₁ is now the start of M₃
 - Connect ε-transitions from all M₁ accept states to M₂ start state
 - Accept states of M₁ become non-accept states
 - M₃ accepts are M₂ accept states



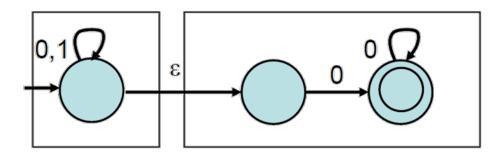
NFA Closure under Concatenation

- $L_1 = \{0,1\}^*$
 - Any string



- $L_2 = \{0\}\{0\}^*$
 - String of all zeros
 - At least 1 zero

- Now combine:

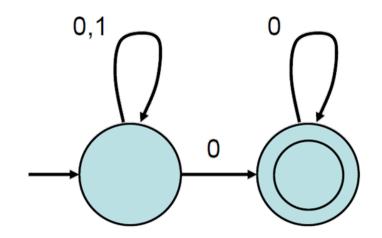


NFAs

- $L_3 = \{0,1\}^* \{0\} \{0\}^*$
 - String ends in a zero block with at least one zero

NFA Closure Under Concatenation

- Could not show with DFA
- $L = {0,1}^{*}{0}{0}^{*}$
 - Strings that consist of a o between
 - a binary string of any length and
 - a o string of any length.
- NFA can guess when the critical o occurs

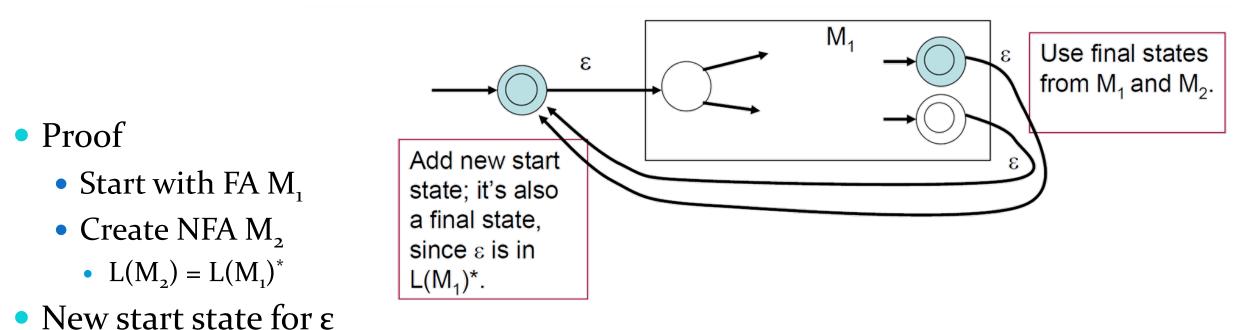


Closure under Star Operation

• Star Operation

•
$$L^* = \{x | x = y_1 y_2 \dots yk \text{ for some } k \ge 0, every y \text{ in } L\}$$

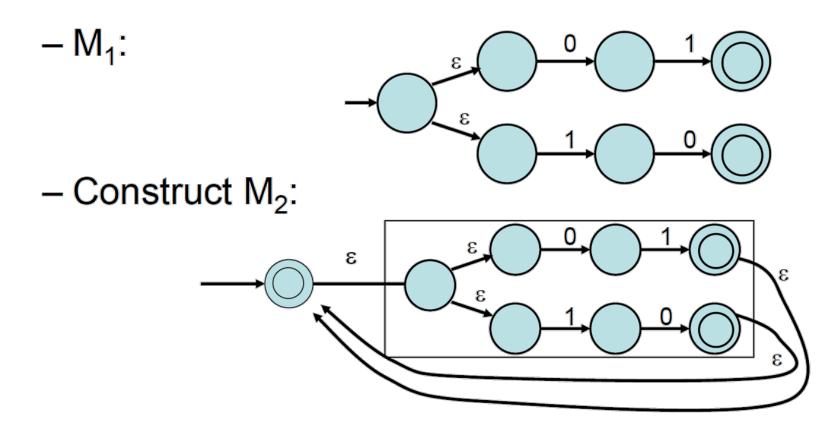
Advanced form of concatenation plus ε



Connect accept states to new start state

Closure under Star Operation

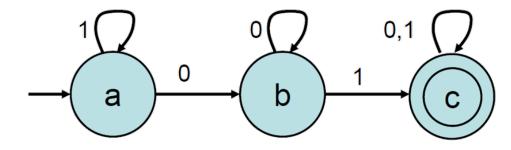
- Example
 - Σ={ 0, 1 }
 - $L_1 = \{ 01, 10 \}$
 - $(L_1)^*$ = even-length strings where each pair consists of a 0 and a 1



DFA Closure under Union

 Theorem: FA recognizable languages are close under union

Example:
M₁: Substring 01



d

cd

ce

е

- DFA proof
 - Start with 2 DFAs
 - Create 3rd DFA by running the original to in parallel
 - If either reaches an accepting state, accept

M₂: Odd number of 1s

ad

ae

M₃: 1

0

0

bd

be

NFA Closure under Union

- NFA proof
 - Start with 2 NFAs
 - Create 3rd by adding a new start state and ε arrows connecting to the 2 original NFAs
- Note: NFAs don't help with Intersection

- Theorem: FA-recognizable languages are closed under union.
- New Proof:
 - Start with NFAs M_1 and M_2 .
 - Get another NFA, M_3 , with $L(M_3) = L(M_1) \cup L(M_2)$.

