

Regular Expressions

Regular Expressions

• Aka regex, regexp, rational expression

- Sequence of characters that define a search pattern
- Usually used to find operations on strings or for input validation
- Use previously described regular operations to build up expressions describing languages
 - The output value of a regular expression is a language
 - (0∪1)0* =
 - language consisting of all strings starting with a o or a 1
 - followed by any number of zeros

Regular Expressions Formal Definition

- Formal Definition for Regular Expressions
- R is a regular expression over alphabet Σ if R is one of the following:
 - 1. $a = any symbol in an alphabet \Sigma$
 - 2. $\varepsilon = any empty string$
 - 3. \emptyset = empty set i.e., empty language
 - 4. ($R_1 \cup R_2$) = Union
 - R₁ and R₂ are <u>smaller</u> regular expressions
 - 5. $(R_1 \circ R_2) = Concatenation$
 - 6. (R_1^*) = Star Operation

Order of Precedence

- * (star) highest
- Then \circ (concatenation)
- U (union)

Languages from Regular Expressions

- Procedure for denoting a regular language from a given regular expression
 - Simplify expressions
 - Star operations provide all possible combinations of elements <u>including</u> the <u>empty set</u>
 - Identify any substrings that cannot be removed
- Example 1
 - Given Regular Expression: $((0 \cup 1)\varepsilon)^* \cup 0)$
 - Denotes language $\{0,1\}^* \cup \{0\} = \{0,1\}^* = \text{All Strings}$
- Example 2
 - Given Regular Expression: $(0 \cup 1)^* 111(0 \cup 1)^*$
 - Denotes language $\{0,1\}^* \{111\} \{0,1\}^* = All strings with substring 111$

Regular Expressions from Language

- Procedure for specifying a regular expression from a given regular language
 - Identify required substring
 - Place in between star strings
 - Star strings must <u>not</u> negate a constraint of the language
 - Special notation $R^+ = R \circ R^*$, $R^+ \cup \varepsilon = R^*$
- Example 1
 - Given language L = *strings over* {0,1} *with odd number of* 1*s*
 - Associated Regular Expression:0^{*} 10^{*} (0^{*} 10^{*} 10^{*})^{*}
- Example 2
 - Given language *L* = *strings with substring* 01 *or* 10
 - Associated Regular Expression: $(0 \cup 1)^* 01 (0 \cup 1)^* U (0 \cup 1)^* 10 (0 \cup 1)^*$
 - Abbreviated Regular Expression: $\Sigma^* 01 \Sigma^* \cup \Sigma^* 10 \Sigma^*$

No Complements

- Previous Example
 - Given language *L* = *strings with substring* 01 *or* 10
 - Associated Regular Expression: $(0 \cup 1)^* 01 (0 \cup 1)^* \cup (0 \cup 1)^* 10 (0 \cup 1)^*$
 - Abbreviated Regular Expression: $\Sigma \circ 01 \Sigma \circ U \Sigma \circ 10 \Sigma \circ$
- Example 1
 - Given language *L* = *strings with neither substring* 01 *or* 10
 - Can't perform a simple complement operation, must write out expression
 - Strings that are all o's or 1's
 - Associated Regular Expression: 0 $^* \cup$ 1 *
- Example 2
 - Given language *L* = *strings with no more than two consecutive* 0*s or* 1*s*
 - Would be easy if we could write a complement but can't
 - Must write out expression: Alternate one or two of o's or 1's
 - Associated Regular Expression: $(\epsilon \cup 1 \cup 11)((0 \cup 00)(1 \cup 11))^* (\epsilon \cup 0 \cup 00)$

Uses for Regular Expressions

- Regular expressions commonly used to specify syntax
 - For (portions of) programming languages
 - Editors
 - Command languages like UNIX shell

• Example: Decimal Numbers

$$DD^*.D^* \cup D^*.DD^*$$

- Where D is the alphabet {0,1, ..., 9}
- Need a digit either before or after the decimal point

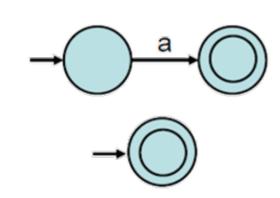
Languages Denoted by Regular Expressions

- If a language can be expressed by a regular expression, it is a regular (FA-recognizable) language.
- Regular expressions will have an equivalent finite automata.
 - Kleene's Theorem

- Theorem 1: If R is a regular expression, then L(R) is a regular language recognized by a finite automata
 - Theorem allows us to convert R to a finite automata

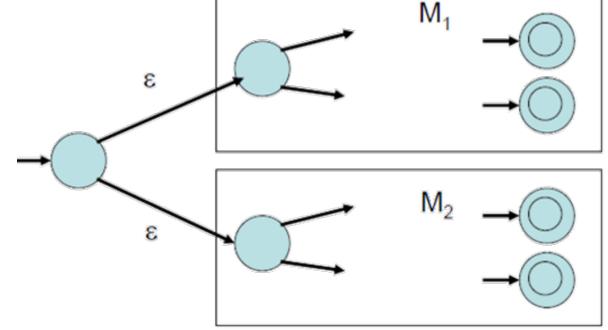
• Proof

- For each R, define an NFA M with L(M)=L(R)
- Proceed by induction on the structure of R (formal definition):
 - Show for the three base cases (a, ϵ , \emptyset)
 - Show how to construct NFAs for more complex expressions from NFAs for their subexpressions
- Case 1: R = a
 - L(R) = {a}, accepts only a
- Case 2: R = ε
 - $L(R) = {\epsilon}$, accepts only ϵ



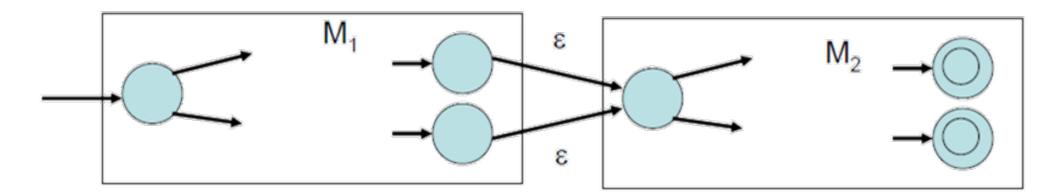
- Theorem 1: If R is a regular expression, then L(R) is a regular language recognized by a finite automata
- Proof
 - Case 3: R = Ø
 - $L(R) = \emptyset$, accepts nothing

- Case 4: $R = R_1 \cup R_2$
 - M₁ recognizes L(R₁)
 - M₂ recognizes L(R₂)



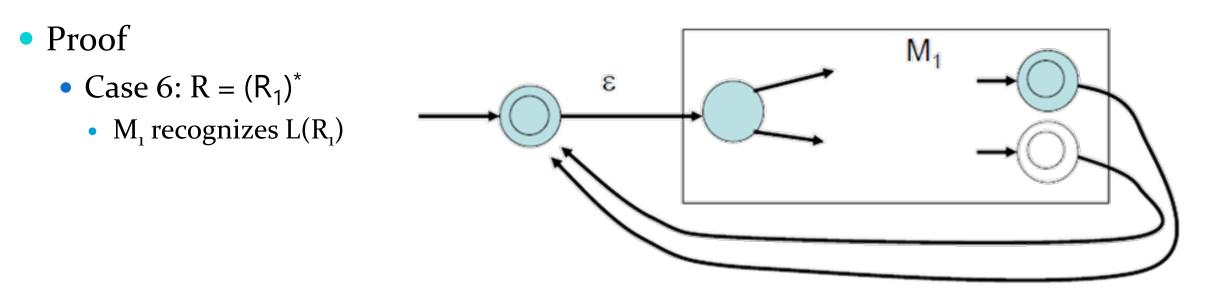
• Same construction we used to show regular languages are closed under union

- Theorem 1: If R is a regular expression, then L(R) is a regular language recognized by a finite automata
- Proof
 - Case 5: $R = R_1 \circ R_2$
 - M₁ recognizes L(R₁)
 - M₂ recognizes L(R₂)



• Same construction we used to show regular languages are closed under star

• Theorem 1: If R is a regular expression, then L(R) is a regular language recognized by a finite automata



• Same construction we used to show regular languages are closed under star