
Section 1.3

Presenter Notes
Presentation Notes

Regular Expressions
 Aka regex, regexp, rational expression

 Sequence of characters that define a search pattern
 Usually used to find operations on strings or for input validation

 Use previously described regular operations to build up expressions
describing languages
 The output value of a regular expression is a language

 (0∪1)0* =
 language consisting of all strings starting with a 0 or a 1
 followed by any number of zeros

Presenter Notes
Presentation Notes
In arithmetic, we can use arithmetic operations (+,-,x,/) to build up expressions such as (5+3)x4Extend this concept to languages where we have expressions of symbols	combine multiple expressions using regular operationsRegular expressions are an algebraic way to describe languagesFinite automata is a finite state machine that operates by taking in inputs and transitions between statesRegular language is the entire set of strings that are recognized by the finite automataRegular expressions are used to denote regular languages	they can represent regula rlanguages and operations on them succinctly

Regular Expressions Formal Definition
 Formal Definition for Regular Expressions
 R is a regular expression over alphabet Σ if R is one of the following:

1. a = any symbol in an alphabet Σ
2. ε = any empty string
3. ∅ = empty set i.e., empty language
4. (R1 ∪ R2) = Union

 R1 and R2 are smaller regular expressions
5. (R1 ∘ R2) = Concatenation
6. (R1

*) = Star Operation

 Order of Precedence
 * (star) highest
 Then ○ (concatenation)
 U (union)

Presenter Notes
Presentation Notes
A regular expression can represent any of the 6 following things

Languages from Regular Expressions
 Procedure for denoting a regular language from a given regular expression

 Simplify expressions
 Star operations provide all possible combinations of elements including the empty set
 Identify any substrings that cannot be removed

 Example 1
 Given Regular Expression: 0 ∪ 1 ε ∗∪ 0)
 Denotes language 0,1 ∗∪ 0 = 0,1 ∗= All Strings

 Example 2
 Given Regular Expression: 0 ∪ 1 ∗ 111 0 ∪ 1 ∗

 Denotes language 0,1 ∗ 111 0,1 ∗= All strings with substring 111

Presenter Notes
Presentation Notes
Common abbreviation 0∪1 = Σ 0∪1 ∗= Σ*

Regular Expressions from Language
 Procedure for specifying a regular expression from a given regular language

 Identify required substring
 Place in between star strings

 Star strings must not negate a constraint of the language
 Special notation R+ = R○R*, R+∪ε= R*

 Example 1
 Given language L = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜𝑜𝑜𝑠𝑠 0,1 𝑤𝑤𝑠𝑠𝑠𝑠𝑤 𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑜𝑜𝑠𝑠 𝑜𝑜𝑜𝑜 1𝑠𝑠
 Associated Regular Expression:0 ∗ 10 ∗ (0 ∗ 10 ∗ 10 ∗)*

 Example 2
 Given language 𝐿𝐿 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑠𝑠𝑠𝑠𝑤 𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 01 𝑜𝑜𝑠𝑠 10
 Associated Regular Expression: 0 ∪ 1 ∗ 01 0 ∪ 1 ∗∪ 0 ∪ 1 ∗ 10 0 ∪ 1 ∗

 Abbreviated Regular Expression: Σ ∗ 01 Σ ∗ ∪ Σ ∗ 10 Σ ∗

Presenter Notes
Presentation Notes
R+ = R plusExample 1: Start with 1 one (0* 1 0*) then concatenate with even number of ones (0* 1 0* 1 0*)* Example 2: Union of 2 languagesCommon abbreviation 0∪1 = Σ 0∪1 ∗= Σ*

No Complements
 Previous Example

 Given language 𝐿𝐿 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑠𝑠𝑠𝑠𝑤 𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 01 𝑜𝑜𝑠𝑠 10
 Associated Regular Expression: 0 ∪ 1 ∗ 01 0 ∪ 1 ∗∪ 0 ∪ 1 ∗ 10 0 ∪ 1 ∗

 Abbreviated Regular Expression: Σ ∗ 01 Σ ∗ ∪ Σ ∗ 10 Σ ∗

 Example 1
 Given language 𝐿𝐿 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑠𝑠𝑠𝑠𝑤 𝑠𝑠𝑜𝑜𝑠𝑠𝑠𝑠𝑤𝑜𝑜𝑠𝑠 𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 01 𝑜𝑜𝑠𝑠 10
 Can’t perform a simple complement operation, must write out expression

 Strings that are all 0’s or 1’s
 Associated Regular Expression: 0 ∗∪ 1 ∗

 Example 2
 Given language 𝐿𝐿 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑠𝑠𝑠𝑠𝑤 𝑠𝑠𝑜𝑜 𝑛𝑛𝑜𝑜𝑠𝑠𝑜𝑜 𝑠𝑠𝑤𝑡𝑡𝑠𝑠 𝑠𝑠𝑤𝑤𝑜𝑜 𝑐𝑐𝑜𝑜𝑠𝑠𝑠𝑠𝑜𝑜𝑐𝑐𝑛𝑛𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜 0𝑠𝑠 𝑜𝑜𝑠𝑠 1𝑠𝑠
 Would be easy if we could write a complement but can’t

 Must write out expression: Alternate one or two of 0’s or 1’s
 Associated Regular Expression: ε ∪ 1 ∪ 11 (0 ∪ 00 1 ∪ 11) ∗ ε ∪ 0 ∪ 00

Presenter Notes
Presentation Notes
Example 2: Opposite is L = strings with at alteast 3 0s or 1s	string with a substring of 000 or 111	Σ*111 Σ* ∪ Σ*000 Σ* 	Can’t complement and must right out expression directlyalternate one or two of each

Uses for Regular Expressions
 Regular expressions commonly used to specify syntax

 For (portions of) programming languages
 Editors
 Command languages like UNIX shell

 Example: Decimal Numbers

𝐷𝐷𝐷𝐷 ∗. 𝐷𝐷 ∗ ∪ 𝐷𝐷 ∗. 𝐷𝐷𝐷𝐷 ∗

 Where D is the alphabet {0,1, … , 9}
 Need a digit either before or after the decimal point

Presenter Notes
Presentation Notes
3-digit number with decimal point

Languages Denoted by Regular Expressions

 If a language can be expressed by a regular expression, it is a regular
(FA-recognizable) language.

 Regular expressions will have an equivalent finite automata.
 Kleene’s Theorem

Proof Theorem 1
 Theorem 1: If R is a regular expression, then L(R) is a regular language recognized

by a finite automata
 Theorem allows us to convert R to a finite automata

 Proof
 For each R, define an NFA M with L(M)=L(R)
 Proceed by induction on the structure of R (formal definition):

 Show for the three base cases (a, ε, ∅)
 Show how to construct NFAs for more complex expressions from NFAs for their subexpressions

 Case 1: R = a
 L(R) = {a}, accepts only a

 Case 2: R = ε
 L(R) = {ε}, accepts only ε

Presenter Notes
Presentation Notes
Formal definition of regular expressiona = any symbol in an alphabet Σε = any empty string∅ = empty set(R1 ∪ R2) = UnionR1 and R2 are smaller regular expressions(R1 ∘ R2) = Concatenation(R1*) = Star Operation

Proof Theorem 1
 Theorem 1: If R is a regular expression, then L(R) is a regular language

recognized by a finite automata
 Proof

 Case 3: R = ∅
 L(R) = ∅, accepts nothing

 Case 4: R = R1 ∪ R2
 M1 recognizes L(R1)
 M2 recognizes L(R2)

 Same construction we used to show regular languages are closed under union

Proof Theorem 1
 Theorem 1: If R is a regular expression, then L(R) is a regular language

recognized by a finite automata

 Proof
 Case 5: R = R1 ∘ R2

 M1 recognizes L(R1)
 M2 recognizes L(R2)

 Same construction we used to show regular languages are closed under star

Proof Theorem 1
 Theorem 1: If R is a regular expression, then L(R) is a regular language

recognized by a finite automata

 Proof
 Case 6: R = (R1)*

 M1 recognizes L(R1)

 Same construction we used to show regular languages are closed under star

	Regular Expressions
	Regular Expressions
	Regular Expressions Formal Definition
	Languages from Regular Expressions
	Regular Expressions from Language
	No Complements
	Uses for Regular Expressions
	Languages Denoted by Regular Expressions
	Proof Theorem 1
	Proof Theorem 1
	Proof Theorem 1
	Proof Theorem 1

