Finite Automata Vs RE

Example 1: Regular Expressions to NFA

- Find NFA for (ab∪a)*
- Start with NFAs for strings of just a and b
- Concatenate NFAs with ε to get ab
- Next union with new start state
- Lastly star previous NFA by connecting accept states to start state.

Example 2: Regular Expressions to NFA

- Find NFA for (a∪b)*aba
- Start with NFAs for a and b
- Union with new start state
- Star by connecting accepts with start state
- Concatenate multiple times for aba
- Concatenate from all accept states to aba

Theorem

- Theorem: If L is a regular language, then there is a regular expression R with $L =$ $L(R)$.
	- Theorem shows relationship from opposite direction
	- Allows a finite automate to be converted to a regular expression
- Generalized nondeterministic finite automaton (GNFA)
	- NFAs with any regular expressions as transition arrows instead of just the alphabet and ε
		- $\delta(q_i, q_j) = R$
	- Can read a block of symbols instead of just individual symbols
- Formal definition changes from NFA
	- $q_o = q_{start}$, $q_k = q_{accept}$, $q_{start} \neq q_{accept}$
	- For every pair of states starting from q_{start} to q_{accept} we get a regular expression
		- \cdot R = set of all regular expressions over the alphabet
		- Regular expressions can be combined

GNFA Restrictions

- For convenience, require GNFAs to always have the following conditions
	- 1. Start state has transition arrows going to every other state
		- 1. but no arrows coming in from any other state.
	- 2. Only a single accept state
		- 1. Arrows from every other state
		- 2. No arrows going to any other state
		- 3. Must be different from start state. (not a single state FA)
	- 3. All other states must be arrows going to each other
		- 1. Must also have a loop to itself.

Formal Definition for GNFA

- A GNFA can be formally defined as a 5-tuple $(Q,\Sigma,\delta,q_{start},q_{accept})$, where:
	- Q is a finite set of states
	- \bullet Σ is a finite set (alphabet) of input symbols
	- δ : (Q-{q_{accept}}) x (Q-{q_{start}}) $\rightarrow \mathscr{R}$ is the **transition function**
		- \bullet \mathcal{R} = collection of all regular expressions over the alphabet Σ
		- Transition any state except accept state to any state except start state is made by any regular expression
	- \bullet q_{start}, is the start state
	- \bullet q_{accept}, is the accept state

Convert DFA to GNFA to Regular Expression

• DFA to GNFA

- Add a new start state with an ε arrow to the old start state
- Add a new accept state with an ε arrow from the old accept state
- Replace arrows with multiple labels or multiple directed arrows between the same nodes with a single arrow labelled with the union of the previous labels
- Add arrows labelled with 0 between states without arrows.
	- Does not change language because θ can never be used.
- Reduce k-state GNFA to k-1 states
	- Repeat until $k = 2$
		- Single arrow from start state to accept state
- Transition arrow label is the **regular expression**.

Reducing Number of States for GNFA

- Select a state to remove that is <u>not</u> the q_{start} or q_{accept}
	- Remove state and consolidate transition arrows pass through removed state
	- Combine regular expressions of consolidated transition arrows
- To remove a state x, consider every pair of other states, y and z, including y=z
- New label for edge (y,z) is the union of two expressions:
	- What was there before, and
	- One for paths through (just) x

Proof of Theorem

- Theorem: If L is a regular language, then there is a regular expression R with $L =$ $L(R)$
- Proof
	- For each NFA M, define a regular expression R with $L(R)=L(M)$
		- Show with an example:

 Convert to a special form with only one final state, no incoming arrows to start state, no outgoing arrows from final state

Proof of Theorem Continued

- Now remove states one at a time (any order), replacing labels of edges with more complicated regular expressions
- First remove z:

• New label ba* describes all strings that can move the machine from state y to state qf, visiting (just) z any number of times

Proof of Theorem Continued

• Next remove x:

- New label b*a describes all strings that can move the machine from qo to y, visiting (just) x any number of times
- New label a ∪ bb*a describes all strings that can move the machine from y to y, visiting (just) x any number of times

Proof of Theorem Continued

• Last, remove y:

- New label describes all strings that can move the machine from qo to qf, visiting (just) y any number of times
- This final label is the equivalent regular expression

$$
\longrightarrow \text{Q}_0
$$
 b^{*}a (a \cup bb^{*} a)^{*} b a^{*}

Example: 2 State DFA to Regular Expression

- Add new states
- Remove state original states one at a time
	- Example removes 2 then 1

Example: 3 State DFA to Regular Expression

- Add new states
- Remove state 1
- Remove state 2
- Remove state 3

