
Section 1.3

Example 1: Regular Expressions to NFA
 Find NFA for (ab∪a)*

 Start with NFAs for strings of just a and b

 Concatenate NFAs with ε to get ab

 Next union with new start state

 Lastly star previous NFA by connecting
accept states to start state.

a

b

ab

ab∪a

(ab ∪ a)*

Example 2: Regular Expressions to NFA
 Find NFA for (a∪b)*aba

 Start with NFAs for a and b

 Union with new start state

 Star by connecting accepts with
start state

 Concatenate multiple times for aba

 Concatenate from all accept states
to aba

a

b

a∪b

(a ∪ b)*

aba

(a ∪ b)*aba

Theorem
 Theorem: If L is a regular language, then there is a regular expression R with L =

L(R).
 Theorem shows relationship from opposite direction
 Allows a finite automate to be converted to a regular expression

 Generalized nondeterministic finite automaton (GNFA)
 NFAs with any regular expressions as transition arrows instead of just the alphabet and ε

 δ(qi,qj) = R
 Can read a block of symbols instead of just individual symbols

 Formal definition changes from NFA
 q0 = qstart, qk = qaccept ,qstart ≠ qaccept

 For every pair of states starting from qstart to qaccept we get a regular expression
 R = set of all regular expressions over the alphabet
 Regular expressions can be combined

Presenter Notes
Presentation Notes
Recall that single alphabet symbols and the empty string are also regular expressions

GNFA Restrictions
 For convenience, require GNFAs to always have the following conditions

1. Start state has transition arrows going to every other state
1. but no arrows coming in from any other state.

2. Only a single accept state
1. Arrows from every other state
2. No arrows going to any other state
3. Must be different from start state. (not a single state FA)

3. All other states must be arrows going to each other
1. Must also have a loop to itself.

Presenter Notes
Presentation Notes
For condition 3, if no arrow existed before create one with the empty set symbol, showing that there is no symbol that can transition with the arrow

Formal Definition for GNFA
 A GNFA can be formally defined as a 5-tuple (Q,Σ,δ,qstart,qaccept), where:

 Q is a finite set of states

 Σ is a finite set (alphabet) of input symbols

 δ: (Q-{qaccept}) x (Q-{qstart}) → R is the transition function
 R = collection of all regular expressions over the alphabet Σ
 Transition any state except accept state to any state except start state is made by any regular

expression

 qstart, is the start state

 qaccept, is the accept state

Convert DFA to GNFA to Regular Expression
 DFA to GNFA

 Add a new start state with an ε arrow to the old start state
 Add a new accept state with an ε arrow from the old accept state
 Replace arrows with multiple labels or multiple directed arrows between the

same nodes with a single arrow labelled with the union of the previous labels
 Add arrows labelled with 0 between states without arrows.

 Does not change language because 0 can never be used.

 Reduce k-state GNFA to k-1 states
 Repeat until k = 2

 Single arrow from start state to accept state

 Transition arrow label is the regular expression.

Reducing Number of States for GNFA
 Select a state to remove that is not the qstart or qaccept

 Remove state and consolidate transition arrows pass through removed state
 Combine regular expressions of consolidated transition arrows

 To remove a state x, consider every pair of other states, y and z, including y=z
 New label for edge (y,z) is the union of two expressions:

 What was there before, and
 One for paths through (just) x

Proof of Theorem
 Theorem: If L is a regular language, then there is a regular expression R with L =

L(R)
 Proof

 For each NFA M, define a regular expression R with L(R)=L(M)
 Show with an example:

 Convert to a special form with only one final state, no incoming arrows to start state,
no outgoing arrows from final state

Presenter Notes
Presentation Notes
Technically when going to a GNFA we are adding arrows to every state with the empty set. But to avoid cluttering it is ok to omit these

Proof of Theorem Continued

 Now remove states one at a time (any order), replacing labels of edges with
more complicated regular expressions

 First remove z:

 New label ba* describes all strings that can move the machine from state y to
state qf, visiting (just) z any number of times

Proof of Theorem Continued

 Next remove x:

 New label b*a describes all strings that can move the machine from q0 to y,
visiting (just) x any number of times

 New label a ∪ bb*a describes all strings that can move the machine from y to y,
visiting (just) x any number of times

Proof of Theorem Continued

 Last, remove y:

 New label describes all strings that can move the machine from q0 to qf,
visiting (just) y any number of times

 This final label is the equivalent regular expression

Example: 2 State DFA to Regular Expression

 Add new states
 Remove state original states one at a time

 Example removes 2 then 1

Example: 3 State DFA
to Regular Expression

 Add new states
 Remove state 1
 Remove state 2
 Remove state 3

	Finite Automata Vs RE
	Example 1: Regular Expressions to NFA
	Example 2: Regular Expressions to NFA
	Theorem
	GNFA Restrictions
	Formal Definition for GNFA
	Convert DFA to GNFA to Regular Expression
	Reducing Number of States for GNFA
	Proof of Theorem
	Proof of Theorem Continued
	Proof of Theorem Continued
	Proof of Theorem Continued
	Example: 2 State DFA to Regular Expression
	Example: 3 State DFA �to Regular Expression

