
Section 1.4



Summary
 Nonregular Languages
 Prove that certain languages cannot be recognized by any finite 

automaton
 Pumping Lemma



Regular vs Nonregular Languages

 Regular languages 
 Correspond to problems that can be solved with finite memory

 i.e. finite states 

 Nonregular languages 
 Correspond to problems that cannot be solved with finite memory
 May need to remember one of infinitely many symbols
 Requires infinite memory



Example of a Nonregular Language
 L = { anbn | n ≥ 0 }

 Because of n, we need the same number of a’s and b’s
 {ε, ab, aabb, aaabbb, aaaabbbb, … }

 If an and am (n ≠ m) end up in the same state, anbn and ambn end up in the same state
 DFA will either accept a string not in the language (ambn) or reject a string in the language (anbn)
 This means for every n, we need a separate state

 n is not limited, machine must track unlimited number possible states
 Finite automata have a finite number of states and can not recognize this language

 Nonregular Language

Presenter Notes
Presentation Notes
Must count a’s and b’s to match	DFAs counted by introducing states	n is not limited = infinite states



Must Prove Infinite Memory is Required
 Languages may not require infinite memory even though it seems so

 Example
 D = { w|w has an equal number of occurrences of 01 and 10 as substrings }

 Seems to require the need for counting occurrences
 However, can be described by the following regular expression

 (1+0*1+)*∪(0+1*0+)*
 D is a regular language

 Easy to prove a language is regular
 Create a finite automata that recognizes it
 Create a regular expression to describe language

 Harder to prove a language is nonregular
 Must use other proof methods such as contradictions.

Presenter Notes
Presentation Notes
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Methods to Prove Irregularity 
 Proof by contraction of a property that is required by a regular language

 3 properties are required for a regular language
1. Closure of language under regular operations (i.e. union, intersection, complement, 

star…)

2. Pumping Lemma

3. Myhill-Nerode Theorem (won’t be on exams)
1. Strings x and y are distinguishable by language L if some string z exists whereby exactly one 

of the strings xz or yz belongs to L
2. Let X be a set of strings where every 2 district strings are distinguishable.
3. Let the index of L be the maximum number of elements in X
4. The theorem states that L is regular iff it has a finite index

1. In addition, the index is equal to the size of the smallest DFA that recognizes it.



Pumping Lemma
 Pumping Lemma

 If A is a regular language, then there is a number p (the pumping length) where if s 
is any string in A of length at least p, then s may be divided into three pieces, s = xyz, 
satisfying the following conditions:
 For each 𝑖𝑖 ≥ 0, 𝑥𝑥𝑥𝑥𝑖𝑖𝑥𝑥 ∈ 𝐴𝐴
 |𝑥𝑥| > 0, and
 |𝑥𝑥𝑥𝑥| ≤ 𝑝𝑝

 p is usually chosen as the number of states in a DFA.
 If there are no strings in A that are at least length p, then pumping lemma holds.

 Used to show the irregularity of a language
 Regular languages always satisfy the pumping lemma
 Opposite is not true

 If pumping lemma holds, it does not mean the language is regular



Pumping Lemma Proof

 M is a DFA that recognizes language A.
 Let p = |Q| (the number of states in M)
 Any string at least of length p can be broken into xyz parts

 Given string s of at least length p
 If s is length n, it transitions into n+1 states
 n+1 is greater than p

 By the pigeonhole principle, some states are repeated
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Pumping Lemma Proof
 If q9 is the state that repeats, s can be divided into xyz with respect to q9

 x = substring before q9, z = substring after q9

 y = substring between q9 occurrences
 2nd condition holds because |y| ≥ 1 > 0

 This shows that the 1st condition of the pumping lemma is satisfied
 xyiz is a string of A

 No matter how many times we use y, it will be accepted because of z

 By the pigeonhole principle, a repeat must have happened by p+1
 Since y is the repeatable portion, 

|xy|≤p (3rd condition)



Pumping Lemma

 All strings longer than the pumping length, p, can be “pumped”
 Contains a section of the string that can be repeated any number of times to create 

new strings that are a part of the language

 All regular languages have the property stated by the pumping lemma
 If the language does not have the property, it is nonregular
 Can be used with proof by contradiction to show that a language is nonregular



Example 1
 Show that L = {0n1n|n≥0} is non-regular using pumping lemma

 Suppose there is a DFA for L with p states

 Find a word w and pump to get a contradiction

 Choose w = 0p1p

 Let w = xyz and pump to xyyz
 Contradiction by the following 3 cases

1. y is all zeros: xyyz has more zeros than ones and does not satisfy L’s conditions
2. y is all ones: xyyz has more ones
3. y is a mix of ones and zeros: xyyz contains a 1 before a 0 which makes the string not 

member of L



Example 2

 Show that L = {ss|s ∈ {0,1}*} is non-regular using pumping lemma

 Choose w = 0p 1 0p 1, p = number of states
 Because of condition 3 of the pumping lemma, |xy| ≤ p

 xy is all zeros
 Pumping y makes the string uneven dissatisfying the ss condition of L

 e.g. w = 00010001, x = 0, y= 00, z = 10001
 xyyz = 0000010001 ≠ ss



Example 3: Palindromes

 Show that L = {w∈{0,1}*|w=wreverse} is non-regular using pumping lemma

 Choose w = 0p 1 0p

 Since |xy| ≤ p, xy is all zeros
 Since |y| > 0, y has at least 1 zero
 xyyz is not a Palindrome

 e.g. w = 0001000, x =00, y= 0, z = 1000, xyyz = 00001000



Example 4
 Show that L = {w∈{0,1}*|w contains the same number of zeros and ones} 

is non-regular using pumping lemma

 Choose w = 0p1p

 Since |xy| ≤ p, xy is all zeros
 Since |y| > 0, y contains atleast 1 zero
 xyyz does not contain an equal number of ones and zeros
 e.g. w = 000111, x = 0, y = 00, z = 111, xyyz = 00000111



Example 5
 Show that L = {1n|n is a prime number} is non-regular using pumping lemma

 Choose w = 1n, with n ≥ p

 w = 1n = xyz = 1a1b1c

 Pumping y does not guarantee that xyiz will have a prime number of ones
 Contradiction



Example 6: pump down
 Show that L = {0i1j|i>j} is non-regular by pumping lemma

 Can’t pump up since i>j

 Choose w = 0p+1 1p

 Since |xy|<p, xy is all zeros
 Since |y|>0, y has atleast one zero
 Removing y will mean i≤j, contradiction
 e.g w = 0000111, x = 000, y = 0, z = 111 

 xyyz =00000111 is in L but 
 xz = 000111 isn’t



Answering Questions about FAs
 We can ask general questions about DFAs, NFAs, and regular expressions and try 

to answer them algorithmically, that is, by procedures that could be programmed 
in some ordinary programming language

 Represent the DFAs, etc., by strings in some standard way, e.g., tuples with some 
encoding of a transition table

 Sample questions:
 Acceptance: Does a given DFA M accept a given input string w?
 Non-emptiness: Does DFA M accept any strings at all?
 Totality: Does M accept all strings?
 Nonempty Intersection: Do L(M1) and L(M2) have any string in common?
 Subset: Is L(M1) a subset of L(M2)?
 Equivalence: Is L(M1) equal L(M2)? 
 Finiteness: Is L(M) a finite set?
 Optimality: Does M have the smallest number of states for a DFA that recognizes 

L(M)?
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