Nonregular Languages

Summary

- Nonregular Languages
- Prove that certain languages cannot be recognized by any finite automaton
- Pumping Lemma

Regular vs Nonregular Languages

Regular languages

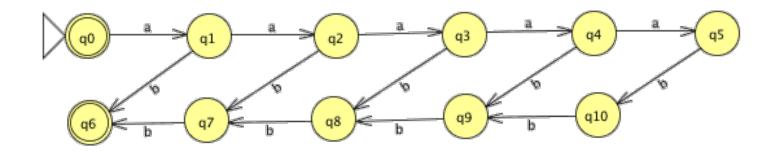
- Correspond to problems that can be solved with finite memory
 - i.e. finite states

Nonregular languages

- Correspond to problems that cannot be solved with finite memory
- May need to **remember** one of infinitely many symbols
- Requires infinite memory

Example of a Nonregular Language

- $L = \{ a^n b^n \mid n \ge o \}$
 - Because of n, we need the same number of a's and b's
 - { ϵ , ab, aabb, aaabbb, aaaabbbb, ... }
 - If a^n and a^m (n \neq m) end up in the same state, a^nb^n and a^mb^n end up in the same state
 - DFA will either accept a string not in the language (a^mbⁿ) or reject a string in the language (aⁿbⁿ)
 - This means for every n, we need a separate state
 - n is <u>not</u> limited, machine must track unlimited number possible states
 - Finite automata have a finite number of states and can not recognize this language
 - Nonregular Language



[•]Must Prove Infinite Memory is Required

- Languages may not require infinite memory even though it seems so
- Example
 - $D = \{w | w \text{ has an equal number of occurrences of 01 and 10 as substrings } \}$
 - Seems to require the need for counting occurrences
 - However, can be described by the following regular expression
 - (1+0*1+)*\(0+1*0+)*
 - D is a regular language
- Easy to prove a language is regular
 - Create a finite automata that recognizes it
 - Create a regular expression to describe language
- Harder to prove a language is nonregular
 - Must use other proof methods such as contradictions.

Methods to Prove Irregularity

- Proof by contraction of a property that is required by a regular language
- 3 properties are required for a regular language
 - 1. Closure of language under regular operations (i.e. union, intersection, complement, star...)
 - 2. Pumping Lemma
 - 3. Myhill-Nerode Theorem (won't be on exams)
 - 1. Strings x and y are **distinguishable** by language L if some string z exists whereby exactly one of the strings xz or yz belongs to L
 - 2. Let X be a set of strings where every 2 district strings are distinguishable.
 - 3. Let the index of L be the maximum number of elements in X
 - 4. The theorem states that L is regular iff it has a finite index
 - In addition, the index is equal to the size of the smallest DFA that recognizes it.

Pumping Lemma

Pumping Lemma

- If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:
 - For each $i \ge 0$, $xyiz \in A$
 - |y| > 0, and
 - $|xy| \le p$
- p is usually chosen as the number of states in a DFA.
 - If there are no strings in A that are at least length p, then pumping lemma <u>holds</u>.
- Used to show the irregularity of a language
 - Regular languages always satisfy the pumping lemma
 - Opposite is <u>not</u> true
 - If pumping lemma holds, it does <u>not</u> mean the language is regular

Pumping Lemma Proof

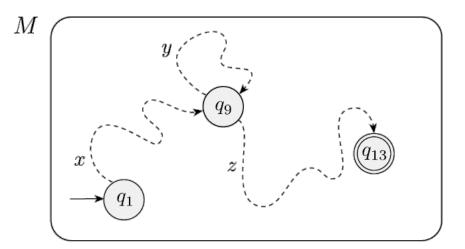
- M is a DFA that recognizes language A.
 - Let p = |Q| (the number of states in M)
 - Any string at least of length p can be broken into xyz parts
- Given string s of at least length p
 - If s is length n, it transitions into n+1 states
 - n+1 is greater than p
 - By the pigeonhole principle, some states are repeated

Pumping Lemma Proof

- If q_0 is the state that repeats, s can be divided into xyz with respect to q_0
 - $x = substring before q_{9} z = substring after q_{9}$
 - y = substring between q₉ occurrences
 - 2^{nd} condition holds because $|y| \ge 1 > 0$
- This shows that the 1st condition of the pumping lemma is satisfied
 - xyⁱz is a string of A
 - No matter how many times we use y, it will be accepted because of z
- By the pigeonhole principle, a repeat must have happened by p+1
 - Since y is the repeatable portion, |xy|≤p (3rd condition)

$$s = s_1 s_2 s_3 s_4 s_5 s_6 \dots s_n$$

$$q_1 q_3 q_{20} q_9 q_{17} q_9 q_6 \dots s_n$$



Pumping Lemma

- All strings longer than the pumping length, p, can be "pumped"
 - Contains a section of the string that can be repeated any number of times to create new strings that are a part of the language
- All regular languages have the property stated by the pumping lemma
 - If the language does not have the property, it is nonregular
 - Can be used with proof by contradiction to show that a language is nonregular

- Show that $L = \{o^n i^n | n \ge o\}$ is non-regular using pumping lemma
- Suppose there is a DFA for L with p states
- Find a word w and pump to get a contradiction
- Choose $w = o^p 1^p$
 - Let w = xyz and pump to xyyz
 - Contradiction by the following 3 cases
 - 1. y is all zeros: xyyz has more zeros than ones and does not satisfy L's conditions
 - 2. y is all ones: xyyz has more ones
 - 3. y is a mix of ones and zeros: xyyz contains a 1 before a 0 which makes the string not member of L

- Show that $L = {ss | s \in {0,1}^*}$ is non-regular using pumping lemma
- Choose w = o^p 1 o^p 1, p = number of states
 - Because of condition 3 of the pumping lemma, $|xy| \le p$
 - xy is all zeros
 - Pumping y makes the string uneven dissatisfying the ss condition of L
 - e.g. w = 00010001, x = 0, y= 00, z = 10001
 - $xyyz = 0000010001 \neq ss$

Example 3: Palindromes

- Show that $L = \{w \in \{0,1\}^* | w = w^{reverse}\}$ is non-regular using pumping lemma
- Choose $w = o^p 1 o^p$
 - Since $|xy| \le p$, xy is all zeros
 - Since |y| > 0, y has at least 1 zero
 - xyyz is not a Palindrome
 - e.g. w = 0001000, x =00, y= 0, z = 1000, xyyz = 00001000

- Show that L = {w∈{0,1}*|w contains the same number of zeros and ones} is non-regular using pumping lemma
- Choose $w = o^{p_1 p}$
 - Since $|xy| \le p$, xy is all zeros
 - Since |y| > 0, y contains atleast 1 zero
 - xyyz does not contain an equal number of ones and zeros
 - e.g. w = 000111, x = 0, y = 00, z = 111, xyyz = 00000111

- Show that $L = \{1^n | n \text{ is a prime number}\}$ is non-regular using pumping lemma
- Choose $w = 1^n$, with $n \ge p$
- $W = 1^n = XYZ = 1^a 1^b 1^c$
- Pumping y does not guarantee that xyⁱz will have a prime number of ones
 - Contradiction

Example 6: pump down

- Show that $L = {o^i i^j | i > j}$ is non-regular by pumping lemma
- Can't pump up since i>j
- Choose $w = o^{p+1} 1^p$
 - Since |xy|<p, xy is all zeros
 - Since |y|>o, y has atleast one zero
 - Removing y will mean i≤j, contradiction
 - e.g w = 0000111, x = 000, y = 0, z = 111
 - xyyz =00000111 is in L but
 - xz = 000111 isn't

Answering Questions about FAs

- We can ask general questions about DFAs, NFAs, and regular expressions and try to answer them algorithmically, that is, by procedures that could be programmed in some ordinary programming language
- Represent the DFAs, etc., by strings in some standard way, e.g., tuples with some encoding of a transition table
- Sample questions:
 - Acceptance: Does a given DFA M accept a given input string w?
 - Non-emptiness: Does DFA M accept any strings at all?
 - Totality: Does M accept all strings?
 - Nonempty Intersection: Do L(M₁) and L(M₂) have any string in common?
 - Subset: Is L(M₁) a subset of L(M₂)?
 - Equivalence: Is L(M₁) equal L(M₂)?
 - Finiteness: Is L(M) a finite set?
 - Optimality: Does M have the smallest number of states for a DFA that recognizes L(M)?