Mathematical Review

Sets

- A *set* is an unordered collection of objects.
 - the students in this class
 - the chairs in this room
- The objects in a set are called the *elements*, or *members* of the set. A set is said to *contain* its elements.
- The notation $a \in A$
 - *a* is an element of the set *A*.
- The notation $a \notin A$
 - *a* is <u>not</u> a member of *A*

Describing a Set: Roster Method

- Roster Method
 - All members of a set are listed between braces.
 - $S = \{a, b, c, d\}$
- Order not important
 - $S = \{a, b, c, d\} = \{b, c, a, d\}$
- Each <u>distinct object</u> is either a member or not;
 - listing more than once does not change the set.
 - $S = \{a, b, c, d\} = \{a, b, c, b, c, d\}$
- Elipses (...) may be used to describe a set without listing all of the members when the pattern is clear.

 $S = \{a, b, c, d, ..., z\}$

Roster Method

- Set of all vowels in the English alphabet:
 V = {a,e,i,o,u}
- Set of all odd positive integers less than 10: $O = \{1,3,5,7,9\}$
- Set of all positive integers less than 100:
 S = {1,2,3,...,99}
- Set of all integers less than 0: $S = \{..., -3, -2, -1\}$

Some Important Sets

- $\mathbf{N} = natural\ numbers = \{0, 1, 2, 3 \dots\}$
- **Z** = *integers* = {...,-3,-2,-1,0,1,2,3,...}
- **Z**⁺ = *positive integers* = {1,2,3,....}
- **R** = set of *real numbers*
- **R**⁺ = set of *positive real numbers*
- **C** = set of *complex numbers*.
- **Q** = set of rational numbers

Describing a Set: Set-Builder Notation

Set-Builder Notation

• Specify the property or properties that all members must satisfy:

 $S = \{x \mid x \text{ is a positive integer less than } 100\}$

 $O = \{x \mid x \text{ is an odd positive integer less than } 10\}$

 $O = \{x \in \mathbf{Z}^+ \mid x \text{ is odd and } x < 10\}$

• A predicate may be used:

 $S = \{x \mid P(x)\}$

- Example: $S = \{x \mid Prime(x)\}$
- Positive rational numbers:

 $\mathbf{Q}^+ = \{x \in \mathbf{R} \mid x = p/q, \text{ for some positive integers } p,q\}$

Interval Notation

$$[a,b] = \{x \mid a \le x \le b\}$$

$$[a,b] = \{x \mid a \le x < b\}$$

$$(a,b] = \{x \mid a < x \le b\}$$

$$(a,b) = \{x \mid a < x < b\}$$

closed interval [a,b] open interval (a,b)

Universal Set and Empty Set

- Venn Diagram
 - Diagram of various shapes used to represent sets and elements.
 - Used to indicate the relationship between sets.
- The **universal set** *U* is the set containing everything currently under consideration.
 - Sometimes implicit
 - Sometimes explicitly stated.
 - Contents depend on the **context**.
- The **empty set** is the set with no elements.
 - Symbolized Ø, but {} also used.

Set Equality

Definition: Two sets are *equal* <u>if and only if</u> they have the same elements.

- Therefore if A and B are sets, then A and B are equal if and only if $\forall x (x \in A \leftrightarrow x \in B)$

• We write *A* = *B* if *A* and *B* are equal sets.

 $\{1,3,5\} = \{3, 5, 1\}$ $\{1,5,5,5,3,3,1\} = \{1,3,5\}$

Subsets

Definition: The set *A* is a *subset* of *B*, if and only if <u>every element</u> of *A* is also an element of *B*.

• The notation $A \subseteq B$ is used to indicate that A is a subset of the set B.

- $A \subseteq B$ holds if and only if $\forall x (x \in A \rightarrow x \in B)$ is true.
 - Because $a \in \emptyset$ is always false, $\emptyset \subseteq S$, for every set *S*.
 - 2. Because $a \in S \rightarrow a \in S$, $S \subseteq S$, for every set *S*.

Tuples

- The **ordered n-tuple** (a₁,a₂,....,a_n) is the **ordered collection** that has a₁ as its first element and a₂ as its second element and so on until a_n as its last element.
- Two n-tuples are equal if and only if their corresponding elements are equal.
- 2-tuples are called **ordered pairs**.
- The ordered pairs (*a*,*b*) and (*c*,*d*) are equal if and only if *a* = *c* and *b* = *d*.

René Descartes (1596-1650)

Definition: The **Cartesian Product** of two sets *A* and *B*, denoted by $A \times B$ is the set of ordered pairs (a,b) where $a \in A$ and $b \in B$.

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

Example:

$$A = \{a, b\} \quad B = \{1, 2, 3\}$$

$$A \times B = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$$

• **Definition**: A subset *R* of the Cartesian product *A* × *B* is called a relation from the set A to the set B.

Cartesian Product

Definition: The cartesian products of the sets A_1, A_2, \dots, A_n , denoted by $A_1 \times A_2 \times \dots \times A_n$, is the set of ordered *n*-tuples (a_1, a_2, \dots, a_n) where a_i belongs to A_i for $i = 1, \dots n$.

$$A_1 \times A_2 \times \dots \times A_n = \{(a_1, a_2, \dots, a_n) | a_i \in A_i \text{ for } i = 1, 2, \dots n\}$$

Example: What is $A \times B \times C$ where $A = \{0,1\}, B = \{1,2\}$ and $C = \{0,1,2\}$

Solution: $A \times B \times C = \{(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,2,2)\}$