# **Graphs and Graph Models**

## **Graphs of Functions**

- Let *f* be a function from the set *A* to the set *B*.
  - The *graph* of the function *f* is the set of ordered pairs  $\{(a,b) \mid a \in A \text{ and } f(a) = b\}$ .



## Graphs

- Definition: A graph G = (V, E) consists of a nonempty set V of vertices (or nodes) and a set E of edges.
  - Each edge has either one or two vertices associated with it, called its *endpoints*.
  - An edge is said to *connect* its endpoints.

**Example:** This is a graph with four vertices and five edges.



## **Remarks on Graphs**

- We have a lot of freedom when we draw a picture of a graph.
  - All that matters is the connections made by the edges, not the particular geometry depicted.
    - For example, the lengths of edges, whether edges cross, how vertices are depicted, and so on, do <u>not</u> matter

- A graph with an infinite vertex set is called an *infinite graph*.
  - A graph with a finite vertex set is called a *finite graph*.

- There is no standard terminology for graph theory.
  - So, it is crucial that you understand the terminology being used whenever you read material about graphs.
  - The book has its own terminology, but you should not be limited to it.

## Some Terminology

- Simple graph
  - Each edge connects two different vertices
  - <u>No</u> two edges connect the same pair of vertices.
- Multigraphs
  - <u>May</u> have **multiple edges** connecting the same two vertices.
  - When *m* different edges connect the vertices *u* and *v*, we say that {*u*,*v*} is an edge of *multiplicity m*.
- Pseudograph
  - <u>May</u> include **loops**, an edge that connects a vertex to itself
  - <u>May</u> also have **multiple edges** connecting the same pair of vertices.

**Example:** This **pseudograph** has <u>both</u> multiple edges and a loop.



## **Directed Graphs**

• **Definition:** A *directed graph* (or *digraph*) *G* = (*V*, *E*) consists of

- a nonempty set *V* of *vertices* (or *nodes*) and
- a set *E* of *directed edges* (or *arcs*).
- Each edge is associated with an ordered pair of vertices.
  - The **directed edge** associated with the ordered pair (*u*,*v*) is said to *start at u* and *end at v*.
- Graphs where the end points of an edge are not ordered are said to be *undirected graphs*.

## **Directed Graph Terminology**

• A *simple directed graph* has no loops and no multiple edges.

#### • Example:

- This is a directed graph with three vertices and four edges.
- Edges ordered differently, but with same vertices, are not considered the same edge
- A *directed multigraph* <u>may</u> have multiple directed edges.
  - <u>May</u> also have <u>loops</u>.
  - When there are *m* <u>directed edges</u> from the vertex *u* to the vertex *v*,
    - we say that (*u*,*v*) is an edge of *multiplicity m*.
- Example:
  - In this directed multigraph
    - multiplicity of (a,b) is 1
    - multiplicity of (*b*,*c*) is 2.





## Graph Models: Computer Networks

- When we build a **graph model**, we use the appropriate type of graph to capture the important features of the application.
- Example: graph models of different types of computer networks.
  - The vertices represent data centers
  - the edges represent communication links
- To model a computer network where we are only concerned whether two data centers are connected by a communications link, we use a **simple graph**.
  - Only care whether two data centers are directly linked
  - Don't care how many links there may be
  - All communications links work in both directions.



## Graph Models: Computer Networks

• To model a computer network where we care about the number of links between data centers, we use a **multigraph**.

• To model a computer network with diagnostic links at data centers, we use a **pseudograph**, as loops are needed.

• To model a network with multiple one-way links, we use a **directed multigraph**.



## Graph Terminology: Summary

- To understand the structure of a graph and to build a graph model, we ask these questions:
  - Are the edges of the graph undirected or directed (or both)?
    - If the edges are undirected, are multiple edges present that connect the same pair of vertices?
    - If the edges are directed, are multiple directed edges present?
  - Are loops present?

| TABLE 1 Graph Terminology. |                         |                         |                |  |  |  |  |  |
|----------------------------|-------------------------|-------------------------|----------------|--|--|--|--|--|
| Туре                       | Edges                   | Multiple Edges Allowed? | Loops Allowed? |  |  |  |  |  |
| Simple graph               | Undirected              | No                      | No             |  |  |  |  |  |
| Multigraph                 | Undirected              | Yes                     | No             |  |  |  |  |  |
| Pseudograph                | Undirected              | Yes                     | Yes            |  |  |  |  |  |
| Simple directed graph      | Directed                | No                      | No             |  |  |  |  |  |
| Directed multigraph        | Directed                | Yes                     | Yes            |  |  |  |  |  |
| Mixed graph                | Directed and undirected | Yes                     | Yes            |  |  |  |  |  |

## **Software Design Applications**

#### • Precedence graph

- Represents which statements must have already been executed before we execute each statement.
- Vertices represent statements in a computer program
- There is a **directed edge** from a vertex to a second vertex if the second vertex cannot be executed before the first

**Example**: This precedence graph shows which statements must already have been executed before we can execute each of the six statements in the program.



# Graph Terminology and Special Types of Graphs

## **Basic Terminology**

Ę

- **Definition 1**. <u>Two vertices *u*, *v* in an **undirected graph** *G* are called *adjacent* (or *neighbors*) in *G* if there is an edge *e* between *u* and *v*.</u>
  - Such an <u>edge e</u> is called *incident* with the vertices u and v and e is said to connect u and v.
- **Definition 2**. The set of all neighbors of a vertex *v*, denoted by *N*(*v*), is called the *neighborhood* of *v*.
  - If v has a loop, v will be included in the neighborhood of v
  - If *A* is a subset of *V*, we denote by *N*(*A*) the set of all vertices that are adjacent to at least one vertex in *A*.
  - So,  $N(A) = \bigcup_{v \in A} N(v)$ .
- **Definition 3**. The *degree* of a vertex in a undirected graph is the number of edges incident with it,
  - <u>Except</u> that a loop at a vertex contributes two to the degree of that vertex.
  - The degree of the vertex *v* is denoted by **deg**(*v*).

## **Degree Terminology**

• A vertex of degree zero is called an **isolated** vertex

- A vertex is **pendant** if and only if it has degree one.
  - A pendant vertex is adjacent to exactly one other vertex

## **Degrees and Neighborhoods of Vertices**

**Example**: What are the **degrees** and **neighborhoods** of the vertices in the graphs *G* and *H*?



#### **Solution**:

G: 
$$\deg(a) = 2$$
,  $\deg(b) = \deg(c) = \deg(f) = 4$ ,  $\deg(d) = 1$ ,  
 $\deg(e) = 3$ ,  $\deg(g) = 0$ .

$$N(a) = \{b, f\}, N(b) = \{a, c, e, f\}, N(c) = \{b, d, e, f\}, N(d) = \{c\}, N(e) = \{b, c, f\}, N(f) = \{a, b, c, e\}, N(g) = \emptyset.$$

## **Degrees and Neighborhoods of Vertices**

**Example**: What are the **degrees** and **neighborhoods** of the vertices in the graphs *G* and *H*?



#### Solution:

Ē

H

*H*:  $\deg(a) = 4$ ,  $\deg(b) = \deg(e) = 6$ ,  $\deg(c) = 1$ ,  $\deg(d) = 5$ .

$$N(a) = \{b, d, e\}, N(b) = \{a, b, c, d, e\}, N(c) = \{b\},$$
  
 $N(d) = \{a, b, e\}, N(e) = \{a, b, d\}.$ 

## **Vertices of Directed Graphs**

- **Definition**: Let (u,v) be a directed edge in the directed graph *G*.
  - Then *u* is the *initial vertex* of this edge and is *adjacent to v* and *v* is the *terminal* (or *end*) *vertex* of this edge and is *adjacent from u*.
  - The initial and terminal vertices of a loop are the same.

## **Directed Graphs**

- **Definition:** The *in-degree* of a vertex v, denoted *deg<sup>-</sup>(v)*, is the number of edges which terminate at v.
  - The *out-degree* of *v*, denoted *deg*<sup>+</sup>(*v*), is the number of edges with *v* as their initial vertex.
  - Note that a loop at a vertex contributes 1 to both the in-degree and the out-degree of the vertex.
- **Example:** In the graph *G* we have



$$deg^{-}(a) = 2, deg^{-}(b) = 2, deg^{-}(c) = 3, deg^{-}(d) = 2, deg^{-}(e) = 3, deg^{-}(f) = 0.$$

$$\deg^+(a) = 4$$
,  $\deg^+(b) = 1$ ,  $\deg^+(c) = 2$ ,  
 $\deg^+(d) = 2$ ,  $\deg^+(e) = 3$ ,  $\deg^+(f) = 0$ .

## **Directed Graphs**

- **Theorem 3**: Let G = (V, E) be a graph with directed edges.
  - Then:

$$|E| = \sum_{v \in V} deg^{-}(v) = \sum_{v \in V} deg^{+}(v).$$

- **Proof**: The first sum counts the number of outgoing edges over all vertices and the second sum counts the number of incoming edges over all vertices.
  - It follows that both sums equal the number of edges in the graph.

## Special Types: Complete Graphs

A *complete graph* on *n* vertices, denoted by  $K_n$ , is the simple graph that contains exactly one edge between each pair of distinct vertices.



## Special Types: Cycles and Wheels

• A *cycle*  $C_n$  for  $n \ge 3$  consists of n vertices  $v_1, v_2, \dots, v_n$ , and edges  $\{v_1, v_2\}, \{v_2, v_3\}, \dots, \{v_{n-1}, v_n\}, \{v_n, v_1\}$ .

![](_page_20_Figure_2.jpeg)

• A *wheel*  $W_n$  is obtained by adding an additional vertex to a cycle  $C_n$  for  $n \ge 3$  and connecting this new vertex to each of the *n* vertices in  $C_n$  by new edges.

![](_page_20_Figure_4.jpeg)

## Special Types: n-Cubes

• An *n*-dimensional hypercube, or *n*-cube, *Q*<sub>n</sub>, is a graph with 2<sup>*n*</sup> vertices representing all bit strings of length *n*, where there is an edge between two vertices that differ in exactly one bit position.

![](_page_21_Figure_2.jpeg)

## Subgraphs

- **Definition:** A *subgraph* of a graph G = (V,E) is a graph H = (W,F)
  - $W \subset V$  and  $F \subset E$ .
  - A subgraph *H* of *G* is a **proper subgraph** of *G* if  $H \neq G$ .
- **Example**: Here we show a graph and one of its subgraphs.

![](_page_22_Figure_5.jpeg)

## New Graphs from Old

- **Definition**: The *union* of two simple graphs  $G_1 = (V_1, E_1)$  and  $G_2 = (V_2, E_2)$  is the simple graph with vertex set  $V_1 \cup V_2$  and edge set  $E_1 \cup E_2$ .
  - The union of  $G_1$  and  $G_2$  is denoted by  $G_1 \cup G_2$ .

![](_page_23_Figure_3.jpeg)

## **Representing Graphs**

## **Representing Graphs: Adjacency Lists**

Definition: An *adjacency list* can be used to represent a graph with no multiple edges by specifying the vertices that are adjacent to each vertex of the graph.

Example:

![](_page_25_Figure_3.jpeg)

| IABLE I An Adjacency Lis     for a Simple Graph. |                   |  |  |  |
|--------------------------------------------------|-------------------|--|--|--|
| Vertex                                           | Adjacent Vertices |  |  |  |
| а                                                | b, c, e           |  |  |  |
| b                                                | а                 |  |  |  |
| С                                                | a, d, e           |  |  |  |
| d                                                | с, е              |  |  |  |
| е                                                | a, c, d           |  |  |  |

![](_page_25_Figure_5.jpeg)

| Initial Vertex | Terminal Vertices |  |
|----------------|-------------------|--|
| а              | b, c, d, e        |  |
| b              | b, d              |  |
| С              | a, c, e           |  |

#### Representation of Graphs: Adjacency Matrices

- **Definition**: Suppose that G = (V, E) is a simple graph where |V| = n.
  - Arbitrarily list the vertices of G as  $v_1, v_2, ..., v_n$ .
- The *adjacency matrix*  $A_G$  of G, with respect to the listing of vertices, is the  $n \times n$  zero-one matrix
  - 1 as its (i, j)th entry when  $v_i$  and  $v_j$  are adjacent
  - 0 as its (*i*, *j*)th entry when they are not adjacent.

• 
$$a_{ij} = \begin{cases} 1 & \text{if } \{v_i, v_j\} \text{ is an edge of } G, \\ 0 & \text{otherwise.} \end{cases}$$

## **Adjacency Matrices**

#### Example:

![](_page_27_Figure_2.jpeg)

- When a graph is **sparse** 
  - it is much more efficient to represent the graph using an adjacency list than an adjacency matrix.
- But for a **dense** graph, an adjacency matrix is preferable.

Note: The adjacency matrix of a **simple graph** is symmetric, i.e.,  $a_{ij} = a_{ji}$ Also, since there are <u>no loops</u>, each diagonal entry  $a_{ij}$  for i = 1, 2, 3, ..., n, is 0.

## **Adjacency Matrices**

- Adjacency matrices can also be used to represent graphs with **loops** and **multiple edges**.
- A **loop** at the vertex  $v_i$  is represented by a 1 at the (i,i)th position of the matrix.
- When **multiple edges** connect the same pair of vertices *v<sub>i</sub>* and *v<sub>j</sub>*, (or if multiple loops are present at the same vertex), the (*i*,*j*)th entry equals the number of edges connecting the pair of vertices.
- **Example**: We give the adjacency matrix of the **pseudograph** shown here using the ordering of vertices *a*, *b*, *c*, *d*.

$$\begin{bmatrix} 0 & 3 & 0 & 2 \\ 3 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ 2 & 1 & 2 & 0 \end{bmatrix}$$

## **Adjacency Matrices**

• Adjacency matrices can also be used to represent **directed graphs**.

- The matrix for a directed graph G = (V, E) has a
- 1 in its (*i*, *j*)th position if there is an edge from *v<sub>i</sub>* to *v<sub>j</sub>*
- In other words, if the graphs adjacency matrix is  $A_G = [a_{ij}]$ , then

$$a_{ij} = \begin{cases} 1 & \text{if } \{v_i, v_j\} \text{ is an edge of } G, \\ 0 & \text{otherwise.} \end{cases}$$

- The adjacency matrix for a directed graph does not have to be symmetric, because there may not be an edge from *v<sub>i</sub>* to *v<sub>j</sub>*, when there is an edge from *v<sub>i</sub>* to *v<sub>i</sub>*.
- To represent **directed multigraphs**, the value of  $a_{ij}$  is the number of edges connecting  $v_i$  to  $v_j$ .

#### Representation of Graphs: Incidence Matrices

- **Definition**: Let G = (V, E) be an undirected graph with vertices where  $v_1, v_2, ..., v_n$  and edges  $e_1, e_2, ..., e_m$ .
  - The **incidence matrix** with respect to the ordering of *V* and *E* is the  $n \times m$  matrix  $\mathbf{M} = [m_{ij}]$ , where

$$m_{ij} = \begin{cases} 1 & \text{when edge } e_j \text{ is incident with } v_i, \\ 0 & \text{otherwise.} \end{cases}$$

## **Incidence** Matrices

**Example: Simple Graph** and **Incidence Matrix** 

![](_page_31_Figure_2.jpeg)

The **rows** going from represent  $v_1$  through  $v_5$ and the **columns** going from represent  $e_1$ through  $e_6$ .

#### **Example:** Pseudograph and Incidence Matrix

![](_page_31_Figure_5.jpeg)

The **rows** going from represent  $v_1$  through  $v_5$ and the **columns** going from represent  $e_1$ through  $e_8$ .

Loops only count once

## Incidence Matrices of Directed Graphs

- Two methods:
  - 1. Convert directed graph to undirected graph then find incidence matrix
  - 2. Use -1 to specify that an edge is directed away from the vertex

• 
$$m_{ij} = \begin{cases} 1\\0\\-1 \end{cases}$$

 $if the edge e_j enters vertex v_i$   $if there is no edge e_j incident with vertex v_i$   $if the edge e_j leaves vertex v_i$ 

## Connectivity

### Paths

- **Informal Definition:** A *path* is a sequence of edges that begins at a vertex of a graph and travels from vertex to vertex along edges of the graph.
  - As the path travels along its edges, it visits the vertices along this path.
- **Applications**: Numerous problems can be modeled with paths formed by traveling along edges of graphs such as:
  - determining whether a message can be sent between two computers.
  - efficiently planning routes for mail delivery.

## Paths

- **Definition:** Let *n* be a nonnegative integer and *G* an undirected graph.
  - A **path of length** *n* from *u* to *v* in *G* is a sequence of *n* edges  $e_1, ..., e_n$  of *G* 
    - There exists a sequence  $x_0 = u$ ,  $x_1$ , ...,  $x_{n-1}$ ,  $x_n = v$  of vertices such that  $e_i$  has, for i = 1, ..., n, the endpoints  $x_{i-1}$  and  $x_i$ .
  - Denote this path by its vertex sequence  $x_0, x_1, \dots, x_n$ 
    - Listing the vertices uniquely determines the path.
  - The path is a *circuit* if it begins and ends at the same vertex (*u* = *v*) <u>and</u> has length greater than zero.
  - The path or circuit is said to *pass through* the vertices  $x_1, x_2, ..., x_{n-1}$  and *traverse* the edges  $e_1, ..., e_n$ .
  - A path or circuit is *simple* if it does <u>not</u> contain the same edge more than once.
  - This terminology is readily extended to directed graphs.

## Paths

- **Example**: In the simple graph here:
  - *a*, *d*, *c*, *f*, *e* is a **simple path** of length 4.
  - *d*, *e*, *c*, *a* is **not a path** because *e* is **not** connected to *c*.
  - *b*, *c*, *f*, *e*, *b* is a **circuit** of length 4.
  - *a*, *b*, *e*, *d*, *a*, *b* is a path of length 5, but it is **not** a simple path.

![](_page_36_Figure_6.jpeg)

## **Connectedness in Undirected Graphs**

- **Definition**: An undirected graph is called *connected* if there is a path between every pair of vertices.
  - An undirected graph that is not *connected* is called *disconnected*.
  - We say that we *disconnect* a graph when we remove vertices or edges, or both, to produce a disconnected subgraph.
- Example: *G*<sub>1</sub> is connected because there is a path between any pair of its vertices, as can be easily seen.
  - However  $G_2$  is **not connected** because there is **no path between vertices** *a* and *f*, for example.

![](_page_37_Figure_6.jpeg)

## **Connected Components**

- **Definition**: A *connected component* of a graph *G* is a connected subgraph of *G* that is <u>not</u> a proper subgraph of another connected subgraph of *G*.
  - A graph *G* that is **not connected** has two or more connected components
    - that are disjoint and have *G* as their union.
- **Example**: The graph *H* is the **union** of three **disjoint subgraphs**  $H_1$ ,  $H_2$ , and  $H_3$ .
  - These three subgraphs are the **connected components** of *H*.

![](_page_39_Figure_6.jpeg)

## **Connectedness in Directed Graphs**

- **Definition**: A directed graph is *strongly connected* if there is a path from every pair of vertices *a* to *b* and a path from *b* to *a*.
- **Definition**: A directed graph is *weakly connected* if there is a path between every two vertices in the underlying undirected graph,
  - Undirected graph is obtained by ignoring the directions of the edges of the directed graph.
- Every strongly connected directed graph is also a weakly connected.

## **Connectedness in Directed Graphs**

- Example: *G* is strongly connected because there is a path between any two vertices in the directed graph.
  - Hence, *G* is also weakly connected.
  - The graph *H* is <u>not</u> strongly connected, since there is no directed path from *a* to *b*, but it is weakly connected.

![](_page_41_Figure_4.jpeg)

## **Counting Paths between Vertices**

- We can use the **adjacency matrix** of a graph to find the number of paths between two vertices in the graph.
- **Theorem**: Let G be a graph with adjacency matrix **A** with respect to the ordering *v*<sub>1</sub>, ..., *v*<sub>n</sub> of vertices
  - The number of different paths of length *r* from v<sub>i</sub> to v<sub>j</sub>, where r > 0 is a positive integer, equals the (*i*,*j*)th entry of A<sup>r</sup>.
  - Directed or undirected edges, multiple edges and loops allowed.

## **Counting Paths between Vertices**

• **Example**: How many paths of length four are there from *a* to *d* in the graph G.

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
 adjacency matrix of G

- **Solution**: The adjacency matrix of *G* is given above.
  - The ordering of the vertices is *a*, *b*, *c*, *d*
  - Hence the number of paths of length four from *a* to *d* is the (1, 4)th entry of  $A^4$ .
  - The eight paths are as:

| a, b, a, b, d | a, b, a, c, d | ]                  | 8 | 0 | 0 | 8 |
|---------------|---------------|--------------------|---|---|---|---|
| a, b, d, b, d | a, b, d, c, d | <b>4</b> _         | 0 | 8 | 8 | 0 |
| a, c, a, b, d | a, c, a, c, d | $\mathbf{A}^{+} =$ | 0 | 8 | 8 | 0 |
| a, c, d, b, d | a, c, d, c, d |                    | 8 | 0 | 0 | 8 |