
Section 1.1

Summary
 Formal Languages
 Finite Automata
 Languages they recognize
 Examples
 Operations on Languages

Natural Languages
 Natural Languages

 Spoken languages such as English, French, German, Spanish…
 Sentences can be broken down into two parts

 Semantics
 Meaning of a sentence

 Syntax
 Form of a sentence
 Specifies if a sentence is valid

 Valid: “the frog writes neatly”
 Invalid: “swims quickly mathematics”

 Extremely complicated and difficult to specify all rules of syntax.
 Syntax may be inconsistent

 Natural languages are not suited for computers
 Must develop formal languages which have well-defined rules of syntax.

Formal Language Terms
 Alphabet

 Any nonempty finite set
 Members are called symbols of the alphabet
 Usually designated by capital Greek letters (Δ,Σ,Π,…)

 String
 Finite sequence of symbols from an alphabet
 Empty strings specified by ε

 Language
 Set of strings
 Can be sorted in either

 Lexicographic Order
 Same as dictionary order

 Shortlex (string) Order
 Sorted by string length than alphabetical order

Presenter Notes
Presentation Notes
A formal language is a language designed for use in specific situationsIn logic, mathematics, computer science, and linguistics, a formal language consists of words whose letters are taken from an alphabet and are well-formed according to a specific set of rules.Sigma1 set = binarySigma2 set = lower case lettersGamma set = custom alphabet with 0,1,x,y,zε = epsilonLanguage = a set of strings	does not need to be all the possible combinations of the alphabet, just a subset	a language may even be an empty set of strings

Finite Automata
 Finite Automata (FAs)

 A model for computation which works well for devices with limited memory

 One of the simplest types of machines that can recognize patterns (strings).

 Designed to:
 Accept some input strings
 Moves through states and either accepts or rejects the string
 Recognize a language, which is the set of strings it accepts.

 One machine for strings of all length for a given formal language.

Finite Automata to Control Devices
 Automatic Swinging Door Controller

 Two States: “OPEN”, ”CLOSE”

 Four Input Signals from pads:
 “FRONT” – person standing on front pad
 “REAR” – person standing on rear pad
 “BOTH” – people on standing on both pads
 “NEITHER” – no one on either pads

Top view of door

State Diagram

State Transition Table

Presenter Notes
Presentation Notes
Example of other finite automataCoin operated vending machinesTraffic lights

Finite Automata Diagram

 Directed Multigraph

 String(word) is received
at the start state
 Accepted if transitions

end at an accept state
 String is rejected as a

valid input if not

Presenter Notes
Presentation Notes
Example accepts a binary string as inputMay have many other symbols in alphabet

Example 1
 Language, L

 Any set of strings over some
alphabet

 L(M), language recognized by
M:
 {w|wis accepted by finite

automata M}
 Regular aka FA-recognizable

 A language that is recognized
by some finite automaton

 What is L(M) for Example 1?

Language of Finite Automata M

 Only strings of containing a
substring of 111 ends at an
accept state

 L(M) is the set of all strings
that contain a 111 substring

 {0,1}* specifies set of all
strings that contain symbols
0 and 1

L(M) = {w ∈ {0,1}* | w contains 111 as a substring}

Formal Definition of an FA
 An FA can be formally defined as a 5-tuple (Q,Σ,δ,q0,F), where:

 Q is a finite set of states
 Σ is a finite set (alphabet) of input symbols
 δ: Q x Σ → Q is the transition function

 q0 ∈ Q, is the start state
 F ⊆ Q, set of accept states

Presenter Notes
Presentation Notes
δ = deltaQ x Σ Q maps the state and input symbol to a new state.

Formal Definition of Example 1
 List all possible states

 Q = {a,b,c,d}

 List all symbols in the alphabet
 Σ = {0,1}

 Specify state transition function with diagram or table
 δ by table:

 Rows represent current state
 Columns current signal
 Elements represent new state being mapped to.

 Specify start state
 q0 = a

 List all accept states
 F = {d}

Example 2: Different Substring

 Design an FA M with L(M)={w∈{0,1}*|w contains 101 as a substring}

Presenter Notes
Presentation Notes
Not limited to a formal definition. Many viable FA

 L(M)={w∈{0,1}*|w doesn’t contain either 00 or 11 as a substring}

 State d is a trap state
 A nonaccepting state that can’t leave

 String is rejected as it is impossible to be accepted
 Sometime some arrows are omitted

 By convention, they go to a trap state

Example 3: Trap State

Example 4: Building Diagram
 L(M)={w∈{0,1}*|all nonempty blocks of 1s in w have odd length}

 E.g., ε, 100111000011111, or any number of zeros
 Initial zeros don’t matter, so start with:

 Then 1 also leads to an accepting state, but it should be a different one, to
“remember” that the string ends in one 1

Example 4 : Building Diagram
 L(M)={w∈{0,1}*|all nonempty blocks of 1s in w have odd length}
 From b:

 0 can return to a, which can represent either ε,
or any string that is OK so far and ends with 0

 1 should go to a new nonaccepting state,
meaning “the string ends with two 1s”

 Note: c isn’t a trap state
 We can accept some extensions

Example 4 : Building Diagram
 L(M)={w∈{0,1}*|all nonempty blocks of 1s in w have odd length}

 From c:
 1 can lead back to b, since future acceptance decisions are the same if the

string so far ends with any odd number of 1s
 Reinterpret b as meaning “ ends with an odd number of 1s”
 Reinterpret c as “ends with an even number of 1s”

 0 means we must reject the current string and all extensions

Example 4 : Building Diagram
 L(M)={w∈{0,1}*|all nonempty blocks of 1s in w have odd length}

 Meanings of states:
 a: Either ε, or contains no bad block (even block of 1s followed by 0) so far

and ends with 0
 b: No bad block so far, and ends with odd number of 1s
 c: No bad block so far, and ends with even number of 1s
 d: Contains a bad block

Example 5
 L(M) = EQ = {w∈{0,1}*|w contains an equal number of zeros and ones}

 No FA recognizes this language
 Not a regular language

 Reasoning
 Machine must “remember” how many zeros and ones it has seen, or at least the

difference between these numbers

 Since these numbers (and the difference) could be anything, there can’t be
enough states to keep track

 So the machine will sometimes get confused and give a wrong answer

	Finite Automata
	Summary
	Natural Languages
	Formal Language Terms
	Finite Automata
	Finite Automata to Control Devices
	Finite Automata Diagram
	Example 1
	Language of Finite Automata M
	Formal Definition of an FA
	Formal Definition of Example 1
	Example 2: Different Substring
	Example 3: Trap State
	Example 4: Building Diagram
	Example 4 : Building Diagram
	Example 4 : Building Diagram
	Example 4 : Building Diagram
	Example 5

