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 Discovering short DNA motifs from a set of co-regulated genes is an important step 

towards deciphering the complex gene regulatory networks and understanding gene functions. 

Despite significant improvement in the last decade, it still remains one of the most challenging 

problems in both computer science and molecular biology. Most of the computational 

approaches for finding motifs belong to one of two broad categories: stochastic optimization 

algorithms based on position specific weight matrices, or combinatorial search algorithms based 

on consensus patterns. Recent evaluation studies have shown that methods based on position 

specific weight matrices tend to stuck in local optima, while combinatorial search algorithms are 

typically limited to small data sets and short motifs only. In this work, we propose a novel 

algorithm based on a population-based stochastic optimization technique called Particle Swarm 

Optimization. Compared to previous methods, our algorithm represent motifs by consensus 

patterns, thus avoiding many of the pitfalls associated with weight matrix-based methods. On the 

other hand, our algorithm does not require exhaustive enumeration of all consensus sequences, 

yet can still quickly converge to an optimal or near optimal solution. Preliminary results on both 

simulated and real biological data sets are encouraging, showing that our method is both more 

efficient and more accurate than several existing algorithms. 
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CHAPTER 1: INTRODUCTION 

One of the most important mechanisms to regulate gene functions is on the transcription 

level, where the expression of genes is mediated by the binding of transcription factors (TF) to 

the promoter sequences of genes. Identifying common transcription factor binding sites (TFBS) 

from a set of putatively co-regulated genes is an important step towards deciphering the complex 

gene regulatory networks and understanding the tissue/condition-specific functions of genes. 

Although TFBS can be detected with an array of wet-lab experiments, such as DNase 

footprinting and Chromatin immunoprecipitation., such experiments are often expensive, time-

consuming, and do not scale well to the whole genome. In practice, many studies have relied on 

a combination of computational and experimental approaches, thanks to many large-scale 

genome sequencing projects and gene expression profiling efforts. In the first step, a set of genes 

that are believed to be co-regulated are obtained computationally or experimentally (e.g. based 

on gene expression data or Chromatin immunoprecipitation assays). Given the promoters of 

these putatively co-regulated genes, one then apply computational motif finding algorithms to 

identify short DNA sequences (“motifs”) that are statistically over-represented in these 

promoters. However, accurate identification of these motifs is difficult because they are typically 

short (8-15 bps) compared to the promoter sequences (usually several hundred to thousands of 

bases long). Furthermore, there is often a great variability among the binding sites of any given 

TF, and the biological nature of the variability is not yet well understood. Despite these 

difficulties, in the past decade a large variety of computational methods have been developed, 

many of which have been proven useful in predicting true binding sites. 

The existing motif finding algorithms often differ from one another in their ways of 

defining motifs, the objective functions for calculating motif significance, and the search 
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techniques used to find the optimal (or near optimal) motifs. Many of these algorithms can be 

classified into one of two broad categories: stochastic searching algorithms based on position 

specific weight matrix (PSWM) motif representations, and combinatorial search algorithms 

based on consensus sequence motif representations. Examples of the first category include the 

well-known programs such as MEME, AlignACE , GibbsSampler , BioProspector, while the 

second category can be exemplified by Weeder, YMF, MultiProfiler, and Projection. For surveys 

of the existing methods and assessments of their relative performance, see Assessing 

computational tools for the discovery of transcription factor binding sites. As can be expected, 

no single currently existing method stands out as the sole best in all cases. In fact, assessing the 

performances of these algorithms is a daunting task itself, and experiments have shown that the 

overall performance of motif finding algorithms is still quite low, (although this should not be 

misinterpreted as a discouragement for further improvement either). Nevertheless, there seems to 

be a slight advantage by combinatorial approaches. To test the capacity of various motif finding 

algorithms, Pevzner and Sze designed a set of challenging cases, the socalled (l,d)-motif, a set of 

DNA l-mers each of which differ from a common consensus sequence by exactly d mismatches. 

The motifs were then embedded into some random DNA sequences and submitted to various 

motif finding algorithms. It has been shown that many stochastic searching algorithms fail to 

recover the embedded motifs even for biologically realistic choices of parameters (e.g. a set of 

(15, 4)-motifs embedded in 20 sequences each with 600 bases). On the other hand, although 

combinatorial search algorithms have generally been shown to perform better in these 

challenging test cases, they typically resort to exhaustive enumeration of all or a large number of 

variants of consensus sequences, and are therefore limited to small data sets and short motifs 

only.  
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In this study, we propose a novel motif finding algorithm based on a population-based 

stochastic optimization technique called Particle Swarm Optimization (PSO). Compared to 

previous methods, our algorithm uses consensus as motif representation, thus avoiding many of 

the pitfalls associated with PSWM-based methods. On the other hand, PSO is purely stochastic, 

does not require exhaustive enumeration of all consensus sequences, yet can still quickly 

converge to an optimal or almost optimal solution. Our preliminary results on both simulated and 

real biological data sets have shown that our method is both more efficient and more accurate 

than a number of existing algorithms.  

The remaining sections are organized as follows. In Chapter 2, we introduce the basic 

ideas of PSO and the generic PSO algorithm for those who are not familiar with this technique. 

In Chapter 3, we discuss the improvement that we made to the generic PSO algorithm in order to 

accommodate the unique nature of motif finding problems, and other algorithmic issues that we 

addressed. We present our experimental results in Chapter 4, and conclude in Chapter 5 with 

some possible future improvement.   
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CHAPTER 2: PARTICLE SWARM OPTIMAIZTION  

Particle Swarm Optimization (PSO) is a population-based stochastic optimization 

technique for problem solving that is inspired by the social behaviors of organisms such as bird 

flocking and fish schooling. The system is initialized with a population of random solutions and 

searches for the optimal solution by updating iteratively. Although PSO shares many similarities 

with evolutionary computation techniques such as genetic algorithms, PSO differs from other 

evolutionary algorithms significantly on how the solutions were updated. In PSO, each potential 

solution, called particle, is represented by a point in the multiple-dimensional solution space. 

When searching for the optimum solution, particles fly around the solution space with a certain 

velocity (speed and direction). During flight, each particle adjusts its position and velocity 

according to its own experience and the experience of its neighbors. Specifically, each particle 

keeps track of the best solution (the position and the fitness value) it has encountered so far. This 

solution is called pbest, which stands for personal best. Each particle also keeps track of the best 

solution by any particle in its neighborhood. This solution is called lbest, which stands for local 

best. Many types of neighborhood structures can be implemented by emulating real social 

networks. In the simplest case, all the particles are directly connected to each other. Then lbest is 

simply the global optimum of all the particles, hence is also called gbest. Therefore, while each 

individual particle is performing a local search, the particles also communicate with other 

particles and learn from them, balancing exploration and exploitation.  

Formally, let vectors xi and vi be the current position and velocity of the i-th particle (0 < 

i < n+1), x
．

i be the recorded position of pbest of the i-th particle, and g
．
 be the position of gbest. 

The fundamental concept of PSO consists of changing the velocity (vi) of each particle at each 
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time step toward its pbest and gbest locations. Acceleration is weighted by a random number, 

with separate random numbers being generated for acceleration toward pbest and gbest locations. 

The particles update their positions and velocities based on the two equations below.  

1 1()*( )i i i i 2 2() *( )ic rand g x
•

•V V c rand x xω
•

• •= + − + −      

i i ix x V= +  
where ω is a parameter called the inertial weight, rand1() and rand2() are vectors of 

random numbers, usually uniformly distributed within 0 and 1. The operator * denotes entry-

wise vector multiplication. It is critical to note that different rand1() and rand2() are generated at 

each iteration and for each particle. c1 and c2 are positive constants, called the acceleration 

constant. c1 is a factor determining how much the particle is influenced by its pbest, and c2 is a 

factor determining how much the particle is influenced by gbest. 

gbest 

Pbest1 Pbest2

Agent1

Agent2

 

                                     Figure 1. How PSO make a movement. 

The above figure shows how personal best and global best affected a particle’s next step 

velocity. It shows two particles above, agent1 and agent2. Each one has its own personal best 

fitness value, pbest1 and pbest2 . And each agent knows the global best fitness value gbest. 

Every next step velocity’s direction and value is depending on by what proportion is each agent 

attracted by pbesti between gbest. Every agent has its current velocity vi and is pulled by pbesti 

and gbest. The vector sum of all these three will give the next step’s direction and velocity 
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amount. When a particle is close enough to the global optimization, final gbest, it should have 

slow down so that it don’t miss the gbest and don’t go farther away. On the other hand, if a 

particle is far from the objective gbest, it should move rapidly to find out the solution in a short 

time. 
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CHAPTER 3: THE PSO-MOTIF ALGORITHM  

Solution representation and fitness function 

In order to apply PSO to the motif finding problem, we need to first define the solution 

representation (and accordingly, the search space) and the fitness function. There are several 

ways to represent a motif. In PSWM-based algorithms, motifs are represented by weight 

matrices, so the solution can be unambiguously represented by a 3l matrix, where l is the length 

of the motif.  

Our focus of this paper is to develop a consensus-based algorithm, due to its relative 

advantage that has been shown recently. To represent a motif in consensus-based algorithms, we 

have two choices. First, we may represent a motif by a consensus sequence, which is a discrete l-

dimensional vector. The search space consists of all the 4l l-mers. Alternatively, a motif can be 

most precisely defined by the list of motif instances contained in the input sequences. Therefore, 

with the motif length fixed, a motif can be represented by a vector of the starting positions of the 

motif instances within each input sequence. Between the two representations, we opt for the 

second representation in this work. The main advantage of the latter is speed in updating, 

although both have their own advantages and disadvantages, and in some cases are equivalent. A 

more detailed discussion of this issue is beyond the scope of this paper.  
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Figure 2. Relationship between each agent 

To evaluate the quality of a motif, we first derive a consensus for the motif by taking the 

most frequent base at each position, and then measure the total number of mismatches between 

the individual instances and the consensus. When this fitness function is used, it is assumed that 

the background sequences have uniform base frequencies, which is usually not true. However, it 

is straightforward to design a more elaborated fitness function to take into consideration 

background base frequencies, with slightly increased running time. 

Mismatch table 

The main difficulty associated with applying the PSO algorithm to motif finding problem is 

that the fitness function is not smooth (in a loose sense). In a typical PSO algorithm, one wishes 

to control the velocity so that at the beginning stage the particles can fly around quickly inside 

the search space, and when a particle approaches the optimal solution, it should slow down so it 

can converge quickly. One can achieve this if the fitness function is continuous, since the 

velocity is updated according to the distances between the current position and the positions of 

pbest and gbest. In motif finding, the distance between two solutions has no indication of the 

difference of their fitness values. For example, as shown in the figure below, position 1 and 

position 2 are separated by 6 mismatces, while position 1 and position N have only 1 mismatch.  
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      Figure 3. Relationship between motif positionsand number of mismatches 

To solve this problem, we remap the neighborhood information in the solution space by 

constructing a dissimilarity graph of all l-mers in each sequence. For example, given an input 

sequence CTCTGCTG and motif length = 3, we can build the mismatch table as in Table 1. 

Table 1. An example mismatch table 

 P1 P2 P3 P4 P5 P6
P1 \ 3 1 2 3 1 
P2 3 \ 3 2 1 3 
P3 1 3 \ 3 3 0 
P4 2 2 3 \ 3 3 
P5 3 1 3 3 \ 3 
P6 1 3 0 3 3 \ 

 

The row index is the current position of a candidate motif in this sequence, the column 

index is the potential new position of the motif, and the values in the cell are the number of 

mismatches between the two l-mers starting at the positions represented by the row index and 

column index, respectively. For example, if the motif start position is updated from 1 to 6, the 

distance is only 1, meaning CTC and CTG have 1mismatch. With this table; we can reformat the 

sequence into a new order, which is more meaningful and useful. In the above table, the 

``neighborhoods'' order of P2 is (P5), (P4), (P1;P3;P6). This table can be pre-computed and 

stored in the main RAM. As one table is needed for each sequence, the total space needed is 

O(nL2), where n is the number of sequences and L is the length of each sequence. For longer 
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sequences, the tables can be made sparse by keeping only the table entries smaller than a certain 

threshold, for example, 2d, where d is the maximum number of errors expected between the 

motif consensus and its instances. 

Update policy 

In order to decide what new positions should be considered as the motif starting position, 

we define the velocity of a particle as the range of the allowed number of mismatches between 

the new and current motif instances. Let D (xi, xj) be the vector of numbers of mismatches 

between the motif instances in xi and xj, we use the following rule to update the velocity of a 

particle:  

vi
u ω vi

u+ c1
u   r1 * D(xi, x

．
i) + c2

u  r2 * D(xi, g) 

vi
l ω vi

l+ c1
l   r1 * D(xi, x

．
i) + c2

l  r2 * D(xi, g) 

Given the upper and lower bounds of the velocities, vi
u and vi

l,  we update xi as follows. Let 

xi (j) be the starting position of the motif on the j-th sequence, and x i ’(j) be the new starting 

position on the same sequence. In order to obtain x i ’(j), we randomly pick a position from 

sequence j such that the number of mismatches between the motifs started at these two positions 

are within the upper and lower bound of the velocity, i.e., 

vi
l (j) <= D(  xi (j)  ,  x i ’(j)  ) <= vi

u (j). 

Occasional full scan and shift check 

Inside the algorithm we always keep track a consensus sequence derived from gbest using 

the most frequently base at each position, and compute the fitness value of gbest. When the 

fitness value of gbest reaches a certain threshold, we use the consensus sequence to do a full scan 

on all sequences to check if there is an l-mer in the input sequence that matches the consensus 

sequence better than the l-mer in gbest.  
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Second, similar to many motif finding algorithms, the output of PSO algorithm may have a 

shift issue: the start positions may be one or two positions away from the real positions, and it is 

difficult for the algorithm to escape from such local optima. To circumvent this problem, we 

periodically check whether shifting the motif positions by a small number can improve the 

quality of the solution. 

                                 Table 2. An example shift table 

Position 1 2 3 4 5 6
A A C T C C
T A C T A G
C A G T A T

 

G A C T A A
Before check --------------------  
After check  --------------------

 

Escape from local optima 

If gbest remains stable for a large number of iterations, we consider that the algorithm has 

reached a local optimum or the global optimum, so we reset the algorithm. There are two ways 

for reset. The first strategy is to simply discard all the information so far and start the algorithm 

from scratch. In some cases with this strategy the algorithm might converge to the same local 

optimum repeatedly. Here we suggest the second strategy, which we call a ''reset move''. When a 

local optimum is detected, we move all the current solution, pbest and gbest by a random 

distance. We have found that this strategy can more effectively help the algorithm escape from 

local optima. 

Termination 

Like many stochastic algorithms, in many cases it is difficult to determine when the 

algorithm should terminate and report a solution. For simulated test cases, we typically know the 

total number of mismatches, so the program can stop when it reaches the threshold. In practice, 

11 



 

however, a user typically does not have prior knowledge about the number of mismatches. If the 

number is given too high, the algorithm may give up the search before it finds the optimal 

solution. On the other hand, if the number is given too low, the algorithm may spend most of its 

time trying to improve over an easily detectable global optimum. Here we implemented three 

methods to determine when the algorithm should terminate: value-based, time-based, and repeat-

based. The value-based method is the easiest: when the solution reaches a pre-defined threshold 

value, the algorithm stops running and returns the solution. The time-based method terminates 

the algorithm after a certain amount of time has passed. Finally, we recommend the repeat-based 

method for real test cases. With this method, before resetting the algorithm, we compare the 

current gbest fitness value with the best gbest fitness value achieved during the course of the 

algorithm. If the current gbest is better than the history gbest, we update the history gbest; if the 

two fitness values and the associated motif consensuses are exactly the same, we stop the 

algorithm and output this result. This method is based on the intuition that, since there are 

typically many local optima, the probability of repeating one local optimum without an update is 

very low. This method is very effective when tested on the real test cases. 

Post-processing 

By default, the quality of a motif is evaluated by the total number of mismatches between 

the consensus sequence and its instances. There are a number of limitations in this basic strategy 

when applied to real biological sequences. First, the mismatch based quality function does not 

consider the background frequency, which is usually not uniform. Second and more importantly, 

in real TF binding motifs the mutation rates are often not uniformly distributed across every 

position, and not every site has the same significance in determining the binding strength. For 

example, many TF binding sites consist of two short conserved regions, separated by a small gap. 
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Therefore, a mismatch in the gapped region should be penalized much less than a mismatch in 

the conserved region. However, in the consensus based method, we are forced to select a 

representative for each position, and the number of mismatches is computed based on that 

representative. 

To address these problems, we apply a post-processing procedure to improve the final 

motif returned by the PSO algorithm. Given the gbest returned by the algorithm, we construct a 

position-specific weight matrix. This matrix is then used to scan all input sequences. This scan 

will likely update some of the motif instances. We then recompute the position specific weight 

matrix and repeat the scan, until the solution does not vary. With this method, the 

matching/mismatching score is weighted by the information content contained in each position, 

and therefore the more conserved positions will have more contribution to the selection of the 

binding sites. Furthermore, we can also take into account the background base frequencies when 

scoring a binding site against the weight matrix. 
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Flow chart 
 

Figure 4 shows the overall structure of the PSO-motif algorithm. The individual steps have 

been described in the previous subsections.  

Input Sequence 

Build the mismatch table 

Initialize all pbest value, v 
value, current pointer, ptemp 

Update pbest value, 
pbest_pointer, current value 

Update gbest value, gbest  

Update v and current pointer 

Termination 
criteria met?

Check shift 

Output 

Number of 
iterations>N?

Reinitialize 
Y Y

N

N

 

Figure 4. Flow chart of PSO- motif algorithm 
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CHAPTER 4: EXPERIMENTAL RESULTS  

We have implemented our algorithm in C. To evaluate the performance of our algorithm, 

we tested it on two types of DNA sequences. The first type of test data consists of simulated data 

sequences, also known as the (l, d)-motif challenging problem. The second type of data contain 

real promoter sequences from E. coli and human genes containing known TF binding sites that 

have been determined experimentally. 

Simulated data sets 

To objectively compare with the existing algorithms, we first tested our algorithm on a set 

of simulated data sets. We synthesized problem instances as follows. First, a motif consensus of 

length l was generated by randomly picking l bases. Second, we randomly selected d positions 

(without replacement) from the consensus and mutated the base at each position to a random 

base, which could be the same as the original base. This generates one instance of the motif. We 

repeated this process to obtain t instances. Third, we randomly generated t background sequences 

of length n each. Finally, we assign each motif instance to a random position in a background 

sequence. This procedure generates t sequences, each containing exactly one instance of the 

motif. All random choices were made independently and with equal base frequencies.  

We first focused on the (15, 4)-motifs challenging problem, which is one of the most tested 

problem instances by many programs. We fixed the number of sequences to 20, and varied the 

length of each sequence from 400 to 1000. Since our algorithm is stochastic, we repeated our 

algorithm multiple times with random restart, and terminated it once it first found the motif. 

Table 3 shows the time needed by our algorithm to solve these instances. The results are the 

average of 20 independent runs on different data sets. Table 3 also shows the running time of two 

of the best combinatorial-search motif finding algorithms: Projection, a random projection based 
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algorithm, and Weeder, a suffix tree based enumeration algorithm. The running time of Weeder 

was taken from the original paper which was published almost 7 years ago. According to the 

original authors, the running time was based on an 89%success probability. Unfortunately we 

were not able to repeat the experiments ourselves since the program is not available. The 

program Projection was downloaded from the original author’s website (http://cse.wustl.edu/ 

jbuhler) and we tested the program on the same data set as our algorithm. PSO-motif and 

Projection were able to recover all the embedded motifs with 100% accuracy. Weeder is 

generally slower than Projection and PSO-motif. While PSO-motif and Projection have similar 

running time, the running time of Projection increases more rapidly with the length of the input 

sequences. Furthermore, the number of iterations of random projections in Projection has to be 

predetermined, which has to be estimated from the motif length and the number of mismatches. 

If a user does not know the number of mismatches in advance, one either has to use a large 

number of iterations which requires a prolonged running time, or use a small number of 

iterations with the risk to miss the real motif. 

Table 3. Running time of PSO, Weeder, and Projection on (15,4)-motif challenge problems 

Sequence length 400 500 600 800 1000 

Weeder <1m 125s 200s 450s 15m 

Projection 9s 23s 42s 162s 418s 

PSO 20s 20s 35s 65s 530s 

       

Next, we compared PSO, Projection and MotifEnumerator, a pattern-driven motif 

enumeration algorithm, on a series of challenge problems with varying motif lengths and number 

of errors. The program MotifEnumerator was downloaded from the original author’s website 

(http://faculty.cs.tamu.edu/shsze/motifenumerator/). Again both PSO-motif and Projection were 
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able to recover the embedded motifs with 100% accuracy. The test cases fixed the number of 

sequences to 20, and the length to 600.  As shown in Table 4, although Projection is more 

efficient than PSO for shorter motifs, its advantage vanishes when motif length increases to 

about 15, and it is slower than PSO for motifs longer than 17. The running time and space 

requirement of MotifEnumerator are exponential to l. Therefore, for small motif lengths (e.g., l = 

11), MotifEnumerator solves the problem very efficiently; however, when l increases to 15, the 

program aborted with an out of memory exception on our testing computer with 2GB RAM. 

Table 4. Running time of PSO and Projection on other motif challenge problems 

(l,d) (11,2) (13,3) (15,5) (17,5) (19,6) 

Projection 4s 13s 42s 94s 174s 

PSO 25s 34s 62s 73s 107s 

MotifEnumerator 5s 119s - - - 

       

Real biological sequences with known motifs 

Finally, we tested our algorithm on several biological samples with known TF binding 

motifs.  

(1) The first sample is the binding sites for the cyclic AMP receptor protein (CRP), which 

functions as a transcription factor in Escherichia coli. The data set contains 18 sequences, each 

105 bp long, which contain 23 sites that have been experimentally determined. This dataset has 

been previously analyzed by Stormo and Hartzell, Lawrence and Reilly and Liu.  

(2) The second test sample is the binding site for the estrogen receptor (ER), which is a 

ligand-activated enhancer protein that binds to specific DNA sequences called estrogen response 

elements (EREs) with high affinity and activates gene expression in response to estradiol. The 
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data set includes 25 genomic sequences, each of which is 200 bp long and contains a single 

known ERE.  

(3) The final data set includes 25 mammalian sequences of 200 bp long that are known to 

contain binding sites for the transcription factors in the E2F family.  

It is important to note the following difference between them and the simulated data set. (1) 

The background base frequencies are not uniform in these real data sets; (2) The number of 

mutations are not known; and (3) The mutation rates vary at different positions. Therefore, it is 

interesting to test whether any of these characteristics in real sequences may pose additional 

difficulty for our consensus-based motif finding 

algorithm.

 

Figure 5. Comparison between known motifs and predicted motifs.  
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                                     Figure 6. Motif after the post-processing 

Figure 5 and Figure 6 show the sequence logos of the known motifs together with the 

flanking regions, compared with the motifs predicted by our algorithm. As shown, our algorithm 

has recovered the consensuses of all three real motifs.  On the other hand, the probabilities of 

observing a given base at some position are different between the predicted and the real motifs, 

especially for the CRP motif. Further investigation shows that the reason for this partial 

discrepancy is often due to (1) each input sequence may contain more than one motif, while our 

algorithm only allowed one occurrence per sequence; (2) our algorithm does not take into 

consideration background base frequencies. In the CRP data set, the 18 sequences contained a 

total of 24 binding sites. Furthermore, the sequences contain a very high AT content (61%). 

Our algorithm included several binding sites that match to the consensus sequence equally 

well as or better than the true sites, but have higher AT contents. Therefore, although the binding 

sites identified by our algorithm have a smaller number of mismatches to the consensus than the 

real binding sites, the former may be less biologically interesting. Therefore, we applied to post-

processing procedure described in Chapter 3 G. Figure 6 shows that the post-processing did not 
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change the consensus sequence, but fine-tuned the motif instances and the predicted motifs with 

post-processing are more similar to the real ones than those without post-processing are. 

 

 

 

 

20 



 

CONCLUSIONS AND DISCUSSION  

In this work, we have proposed a novel algorithm for finding DNA motifs based on a 

population-based stochastic optimization technique called Particle Swarm Optimization (PSO). 

Compared to previous methods, our algorithm represent motifs by consensus patterns, thus 

avoiding many of the pitfalls associated with weight matrix-based methods. On the other hand, 

our algorithm does not require exhaustive enumeration of all consensus sequences, yet can still 

quickly converge to an optimal or near optimal solution. Preliminary results on both simulated 

and real biological data sets are encouraging, showing that our method is both very efficient and 

accurate. When applied to simulated challenge problems, PSO is slower than two existing 

algorithms in easy cases, while much faster in more difficult cases involving longer input 

sequence or longer motifs and more mutations.  

Furthermore, our algorithm does not require the number of mismatches to be given as a 

parameter, which is more useful in practice. For real biological sequences, our method with post-

processing has successfully identified the known motifs and most of the binding sites. Our 

studies have shown that PSO is a reliable and efficient technique for solving the difficult motif-

finding problem, and we are looking into applying it to other challenging problems in 

computational biology. 
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