

3D TRACKING SIMULATION OF ORBITING SATELLITES

A Project Report

Presented to

The Faculty

of the Department of Computer & Electrical Engineering/Computer Science

California State University, Bakersfield

In Partial Fulfillment

of the Requirements for

Senior Project

in

Computer Science

By

Doney Peters | Ivan Cisneros | Joey Hubbard | Thang Hin

May 2020

© 2020

Doney Peters | Ivan Cisneros | Joey Hubbard | Thang Hin

ALL RIGHTS RESERVED

2

ABSTRACT

3D Tracking Simulation

of Orbiting Satellites

By

Doney Peters

Ivan Cisneros

Joey Hubbard

Thang Hin

While advances have been made in web applications that handle satellite tracking and

imaging, little effort has been spent on creating highly functional and immersive simulations of

the orbits of these satellites. The aim of this project is to create an efficient satellite tracking web

application that will give users an accurate representation of the positions of satellites and allow

users to see which satellite(s) are passing over at their present location in real-time. In addition,

this web application will include a simulation using the Unity Real-Time Development Platform.

Satellite tracking has only grown more complex over the years as more and more satellites are

launched into space, with sources estimating at more than 1800 satellites currently in orbit. As

such, current satellite tracking applications are inefficient and outdated. This project will rectify

these deficiencies and will present users with a simple web-based application of the orbits taken

by satellites.

3

TABLE OF CONTENTS

ABSTRACT 3

LIST OF TABLES 5

LIST OF FIGURES 6

LIST OF TERMS 7

Chapter 1 8
Introduction 8

Chapter 2 11
Project Architecture 11

Chapter 3 18
Implementation 18

Chapter 4 21
Results 21

Chapter 5 22
Conclusion 22

References 23

4

LIST OF TABLES

Table

1. Two-Line Element Set Format Definition, Line 1 ………………………………………….12
2. Two-Line Element Set Format Definition, Line 2 ………………………………………….12

5

LIST OF FIGURES

Figure 1. Project Flowchart..…...………………..……………………………………………...11
Figure 2. Two-Line Element………………………………………………………………........12
Figure 3. MongoDB Atlas Architecture……..………………………………………………….17
Figure 4. Flowchart of converting TLE to unit/velocity vectors…………………………….....18
Figure 5. Depiction of satellite coordinates being displayed…..…………………………….....19
Figure 6. Project homepage………………………………..…..…………………………….....21
Figure 7. Unity simulation of satellite orbiting Earth, with its coordinates displayed...…….....22

6

LIST OF TERMS
TLE Two Line Element

NORAD North American Aerospace Defense Command

SATCAT Satellite Catalog (number)

SGP Simplified General Perturbation

API Application Programming Interface

JSON JavaScript Notation Object Notation

ECI Earth Centered Inertial

dll Dynamic-Link Library

MVC Model-View-Controller

.NET Microsoft Web Application Framework

Azure Microsoft Azure Cloud Computing Platform & Services

7

Chapter 1
Introduction

 On October 4th, 1957, The Soviet Union launched the first ever satellite to achieve an

elliptical low Earth orbit. Just 60 years later, the number of satellites in orbit is greater than one

thousand. These satellites serve many purposes, from communication and Earth observation, to

telescopes and space exploration. Satellites have become paramount to our global digital

infrastructure. The challenge to keeping an object circling the globe has only grown more

complex now that there are more satellites in space to avoid. The goal of our project is to create a

useful and real-time satellite tracker that will display the position and path of all satellites in

orbit.

Satellites are mostly tracked with computer programs using what are known as TLEs or

Two Line Elements. TLEs are text files that contain two lines of characters and digits necessary

to identify, and accurately track where a satellite may be at a specific time of day to a certain

degree of accuracy. These files can be gathered from numerous repositories and websites,

however, we will be retrieving our data from www.space-track.org, which is a government

contractor managed satellite repository created by the United States Air Force. This website has

an API (Application Programming Interface) our web application will be able to connect to in

order to retrieve the TLE data of the satellites that will be tracked (admin@space-track.org,

"Help Documentation"). Upon request, the space-tracker interface will return TLE data of the

specified satellites in the format of a JSON(JavaScript Object Notation) file.

8

Once satellite data files have been retrieved from the Air Force repository, they will need

to be parsed in order to be properly utilized. Part of the challenge of our project will be to

convert this TLE position information into data that can be rendered into our simulation in a

manner that will accurately represent where each satellite is located in relation to the Earth. We

plan to write algorithms based on simplified perturbation models, which are mathematical

models used to calculate space objects relative to the ECI(Earth Centered Inertial) coordinate

system ("About Aerospace Coordinate Systems", 2019). Once the mathematical data for a

celestial object has been properly parsed, its 3D simulated location is ready to be shown to the

user of the web application.

The 3D simulation is going to be rendered by using the Unity engine, a popular 3rd party

cross platform game engine created by Unity Technologies. The Unity engine will permit the

project to be flexible since it allows the utilization and combination of three languages;

JavaScript, boo, and C#. Not to mention, the Unity engine has a feature that allows exporting to

webGL, a JavaScript API for rendering interactive 3D graphics on a web browser. In addition to

that, Unity’s documentation has a section on how to develop a WebGL platform using the Unity

engine. Therefore, the development tools are all compatible since Unity provides support for a

WebGL platform development.

However, this is not without constraint. There are several constraints in using Unity

engine to develop a WebGL platform. An example of a constraint is JavaScript do not support

multi-threading since JavaScript views the browser as a single thread. As a result, WebGL

platform developed through the Unity engine can not take advantage of threads to speed up

performance or utilize threads in scripted codes and managed dlls (Dynamic-Link Library).

9

Aside from the simulation, the web application itself will be written using the Microsoft

.NET Core framework. The server side of the application will be written using the C# language

and organized using MVC (Model-View-Controller) architectural pattern. The client side of the

program will be written using a variety of standard web languages, such as HTML, CSS,

JavaScript, in addition to utilizing Microsoft Razor pages for some data retrieval from the

server.

Another feature is the utilization of the MongoDB program, which is an open source

database management system, in order to store TLE data. This is an important component to the

functionality of this project as it will help in the organization and accessibility of large amounts

of data. As there are hundreds of satellites orbiting the Earth, it is necessary to be able to store

and access information, such as JSON objects from the Space-Track API, through a reliable and

accessible DBMS.

Many challenges will be faced while working on this project. The main set of challenges

that are expected include proper distance simulation scaling in Unity, accurate mathematical

calculations when acquiring satellite coordinates using the TLE data, and project complexity

time constraints. Additionally, one last potential problem that will be faced is the learning curves

when working with new frameworks and a new database management system. Learning the ins

and outs of how these function and how they can be utilized to reach the solution desired.

In view of the fact that there has been little effort in the creation of highly functional and

immersive simulations of the orbits of satellites, the concern of this project is specifically aimed

towards addressing such concerns and creating a multi-featured, intuitive, user experience.

10

Chapter 2
Project Architecture

The high level layout for this project can be broken down into four major components:

the database storing the two line element files needed to calculate the coordinates of the celestial

objects, the server side module that requests and receives specified TLE data from

space-track.org and parses the file, the server side module calculates the actual celestial

Cartesian coordinates, and, finally, the front end encompassing the Unity simulation experience

in addition to satellite object information. A high level diagram depicting the project is shown

below:

Figure 1.​ Flowchart of the main components of our project.

11

Perhaps the key component of the entire project are the celestial two line element

files. As stated previously, these files contain a comprehensive list of all active satellite

TLE data. Ironically, a single TLE entry inside this file contains three lines of data. These

lines follow a strict format as defined by NORAD SATCAT and NASA. The first line,

“line 0”, contains a twenty-four character satellite name. The specifications of the next

two lines are given in table 1 and table 2. The following figure shows the TLE data for

the International Space Station.

Figure 2.​ An example of a Two-Line Element

12

Table 1-2.​ TLE format for line 1 and line 2.

It should be apparent by the tables 1-2 that there is a great deal of information provided

within these packets of TLE data. For our project, the data inside the TLE will serve two

functions:

1) data relevant to the position of the satellite will be used in the SGP calculations

2) data that may be of interest to users will be made viewable inside a display within

the simulator

Once the TLE files are inside the Mongo database, it must be converted from text into

numeric values. This process involves parsing the text, or splitting line 1 and line 2 of the TLE

precisely into the substrings based upon the defined formats from NORAD SATCAT in Tables

13

1-2. For the purpose of calculating the satellite position, the necessary fields are the eccentricity,

inclination, right ascension of the ascending node, the argument of perigee, and mean anomaly.

These values are fed as input parameters into the SGP4 perturbation model, which calculates the

position of satellites based on the TLE data.

The client side of the project will encompass many different frameworks to give the user

the most enjoyable experience when interacting with the application. First off, the overall design

aesthetic will be designed using the Twitter Bootstrap user interface library. When the overall

look of the web page was discussed, it was decided that a minimalistic, material design would

provide the best experience for the user. The Bootstrap framework greatly minimizes the

complexity of this task with pre-designed navigation bars, lists, tables, and text fonts. The client

user interface will consist of only a single web page containing the simulation in addition to a list

of satellites currently being displayed and their corresponding coordinates.

Razor pages, part of the Microsoft .NET Core framework will be used to pass calculated

satellite coordinates from the server side of the application to the client side. Razor pages allows

a developer to write C# code into a web page and then at compile time, it is converted into

HTML and Javascript. The retrieved coordinates are then displayed via text for the user to see.

Additionally, the names of the satellite whose coordinates are calculated will be sent from the

server to the client using the same Razor pages ViewData object technique. The names are

displayed with their corresponding coordinates. However, a drawback exists to exclusively using

the ViewData objects to request data from the server. Anytime a new request is made, the entire

page must refresh in order for the web page to properly display the results of the request made by

14

the user. This issue can be overcome by using AJAX (Asynchronous Javascript and XML) calls

to the server from the client.

The most important portion of the client interface, the satellite simulation, will be written

using the Unity framework to render the Earth and all of the simulated celestial objects. The

coordinates of each satellite will be passed from the ViewData object into a javascript variable

which Unity will use as a reference point to determine where to render the object relative to the

Earth. From this point, Unity will also need to know the position and velocity vectors of the

object as well, which the server will be able to provide using a simple AJAX request. From these

pieces of information, Unity will successfully render the object and properly simulate its orbit

and speed.

Before being injected into the browser, the Unity project must also be given constants of

gravitational pull of the earth, in addition to the moon, which affects how celestial objects orbit

the planet. Once all of the renderings and gravitational constants are loaded into the Unity

project, it is exported as a WebGL file, which includes three files, the HTML code, a directory

containing all the javascript necessary to render the objects in the browser, and the CSS styling

to properly show display the unity frame around the simulation. The HTML files are injected

into the main web page of the client and the other two directories are included in the project file

system. The user will see the simulation displayed in the center of the page with options to go to

full screen to give a more focused experience.

 Another major component of this project is the database for which the TLE data will be

stored in and accessed from the client-side. MongoDB’s document model serves as a great

appliance into our project as it stores data in JSON-like documents, which the TLE data gathered

15

from Space-Track is formatted in. In order to fully utilize MongoDB into the project, it was

decided that a cloud-based database would serve as a better option because it handles most, if not

all of the complexity that comes with creating a database (Host, management, securing, etc.).

This service is provided using MongoDB Atlas, which uses Microsoft’s Azure cloud service that

handles the server side of the database management system. Atlas handles much of the concerns

as we progressed further into the project, such as its scalability, hosting, and any latency issues

we face. Outside of this, it works very similar with traditional database management systems.

Atlas also requires a sharded cluster to be set up before creating the database, which is made up

of shards that contain subsets of sharded data and mongos that act as query routers that provide

the interface between the client application and the cluster. It allows for scale reads and writes

through several nodes. This is setup on MongoDB’s website. Below is a diagram that illustrates

this process:

Figure 3.​ An architectural overview of MongoDB Atlas.

16

Once completed, the team utilized another feature of MongoDB – MongoDB Compass. Compass

is a graphical user interface that allows the visualization and exploration of data stored in a

database. These features include the implementation of data validation,

adding/removing/updating data, and evaluating how the database is performing. With these tools,

the team was able to create the database. Each member was issued admin privileges to the

database, with the leading member of the database portion to oversee the management of the

database. A connection-string was created that will allow each member of the team to establish a

connection to the database. This is needed for the server side of the project to connect to the

database in order to access the information stored. Once done, we pulled the TLE data from the

repository in space-track.org and stored it into the database. To do so, we excavated and

retrieved its TLE data, stored into JSON files, and added it to the database. As shown in Figure

1, the TLE data pulled from space-track.org will be called from the server side and sent to the

database, where it will be stored so that it can be displayed on the client side through the

simulation in Unity.

This concludes the components that make up the design of this project, as well as the first

half of our project report. More will be added as we progress further into our project.

17

Chapter 3
Implementation

The implementation of this project began with the web application itself and the

third party library, One_SGP4, to help us understand how to convert our TLE files into

coordinate systems that can be interpreted by the Unity simulation that was to be built. Using the

aforementioned library, we were able to feed in a single TLE file as a string, step through how

the process of calculating and converting the numbers were performed, and, finally, see if the

output actually matched with actual current locations of the satellite we were observing. From

this point, we were able to swap out components starting with the conversion to unit and velocity

vectors. The conversion process is displayed in the flowchart below:

Figure 4.​ Flowchart of converting TLE to unit/velocity vectors.

18

This task was performed methodically and followed a similar structure to the library, in

order to easily integrate the custom modules that were built with the third party conversion

methods that would turn the vectors into coordinates. The decision to keep the third party

conversion methods was due to the high complexity of the conversion methods, due to the time

constraints and the other tasks that needed to be completed.

On the client side of the application, the javascript language was used to implement the

fetching of the coordinates from the servers and displaying them for the users to experience.

Additionally, Javascript was also used to pass the requested coordinates to the WebGL

simulation using the unityInstance.sendMessage() method. Once the user clicks on and navigates

to the simulation page, a razor page method is used to call the server to retrieve the names of all

of the satellites stored in the database. Once all the names have been successfully loaded, the

user is able to click on the name and activate the aforementioned Javascript methods that request

and retrieve the calculations of the selected satellite. Upon a successful response from the server

the coordinates are then displayed and updated every second underneath the satellite’s name to

show the real time latitude, longitude, and elevation of the celestial object. A snippet of the the

data being displayed is shown below:

Figure 5.​ Depiction of satellite coordinates being displayed.

19

Then the unityInstance.sendMessage(‘GameObject’,’Method’,’JsonObject’) method will

send a JsonObject to the unity simulation’s window, specifically to the associated GameObject

along with the Method that is invoke by the unityInstance.sendMessage invocation. In this case

the unityInstance.sendMessage(‘CreateSatellite’,’testSate’,’JsonObject’) will invoke the

GameObject CreateSatellite and the function testSate will be executed with the parameter

JsonObject being passed into it. Afterward, the testSate function will be-serialized the

JsonObject into usable variables.

The variable will then be utilized to compute spherical coordinates since the simulation

uses spherical coordinate planes. The formula is x = Earth_radius + elevation * sin(latitude) *

cos(longitude), y = Earth_radius + elevation * sin(latitude) * sin(longitude), z = Earth_radius +

elevation * cos(latitude). The x, y, and z will create a Vector3 variable that will be utilized as a

position for the satellite to be created on.

Lastly, the TLE data is stored into a cloud database in the form of JSON-like documents

gathered from Space-Track. MongoDB Atlas served as a great appliance to achieve this, as it

also uses JSON-like documents for its document storage. It allows for the handling of large data,

which is essential to make our website work as there are thousands of satellites with thousands

more of TLE information. And so, they are stored into the MongoDB database where they can be

queried. When the query is made, the server will convert the TLE positional data, using the

SPG4 perturbation model, into coordinates relative to Earth. It will then be called from the client

side and be displayed through the simulation in Unity.

20

Chapter 4
Results

After the implementation phase, we were able to integrate all of the components of our

project together and create a website that included a simulation that took in accurate coordinates

based on the updated TLE data at space-track.org. Below are screenshots that display elements of

our website:

Figure 6.​ Project homepage.

21

Figure 7.​ Unity simulation of satellite orbiting Earth, with its coordinates displayed.

The client side uses basic HTML 5 components, as well as JQuery and Bootstrap libraries

that provides users with a clean and simple interface. One of the driving factors for our project

was to make it user-friendly, as compared to other websites that have also done the same.

Additionally, the Unity simulation was integrated into the webpage and converted to Javascript

through a WebGL plugin.

With the server side, we were able to make it retrieve the TLE data from space-track.org

through an API request. The TLEs are stored into the MongoDB Atlas database, where it will be

passed to the client side of the web page. This results in the users being able to view the latitude,

longitude, and elevation coordinates of a satellite and see it in real time through the Unity

simulation. Users are able to select which satellite they want to see, and the information

regarding its coordinates to determine the location relative to Earth.

Using Unity, we were able to successfully create a simulation of the satellites orbiting

Earth. Each of the coordinates were passed through JSON objects into Javascript variables,

22

which Unity used as a reference point to determine where to render the object relative to Earth.

The server then provided Unity the position and velocity vectors of the objects through AJAX

requests. From this, we were able to render the object and properly simulate its orbit and speed.

Lastly, we were able to utilize MongoDB’s document model to store the TLE data

gathered from Space-Track as they were stored in JSON-like documents. MongoDB Atlas

allowed the server side to access that information that was queried in the database. When a query

is made, the server converts the TLE positional data into a series of latitude, longitude, and

elevation coordinates that use the SPG4 model. The TLE data pulled from Space-Track is called

from the server side and sent to the cloud database, where it is stored so that it can be displayed

on the client side through the Unity simulation.

Overall, the results of our project were a success. We were able to create a website that

allows for users to see the current position of satellites in real time. Each group member was able

to contribute different aspects of the project that coalesced into a functioning web tracking

application. Elements of JavaScript, Unity, DBMS, and others were utilized in the creation of the

website. We were also able to market our project through the submission of our proposal to

several organizations, and are eager to continue working on it in the hopes that it can be utilized

in real world applications. Project Pathfinder gives users an immersive experience by allowing

them to select satellites from our database to view their coordinates, and navigate through space

within our Unity WebGL simulator.

23

Chapter 5
Conclusion

After a year of working on Project Pathfinder, a great deal of experience has been gained

in creating web applications that implement Unity WebGL and the physics behind pinpointing a

satellite’s location. Each of us were responsible for complex modules within the project; having

strong connectivity between each module was an imperative, otherwise, the overall experience

for the user would suffer. We believe that the end result of our project is a fun and immersive

application that gives people the opportunity to see satellites up close. Most people do not

realize the scope at which they rely on satellites for their daily lives and they take this technology

for granted. We hope that this project gives users a newfound or deeper love of space and space

technology.

Though this is the conclusion, Project Pathfinder is not yet finished! We hope to

incorporate in the future additional features such as a mobile app version, the ability to predict

when a satellite will pass overhead, unique satellite textures, toggling sunlight effects, and

time-scaling. We really enjoyed working on Project Pathfinder for the past year and we want to

continue our work on it to see how far this path will take us.

24

References

● Vallado, D., & Crawford, P. (2008). SGP4 Orbit Determination. AIAA/AAS

Astrodynamics Specialist Conference and Exhibit. doi: 10.2514/6.2008-6770

● “About Aerospace Coordinate Systems”. (2019). Retrieved from

https://www.mathworks.com/help/aeroblks/about-aerospace-coordinate-systems.html

● "Orbital Propagation: Part I". (1994, September). Retrieved from

https://www.celestrak.com/columns/v01n01/

● "Orbital Propagation: Part II". (1995, March). Retrieved from

https://www.celestrak.com/columns/v01n04/

● Bate, R. R., Mueller, D. D., & White, J. E. (2015). ​Fundamentals of astrodynamics​. New

York: Dover Publications.

● Vitagliano, A. (n.d.). Retrieved from

https://web.archive.org/web/20070907013516/http://main.chemistry.unina.it/~alvitagl/sol

ex/MarsDist.html

● (n.d.). Retrieved from

https://spaceflight.nasa.gov/realdata/sightings/SSapplications/Post/JavaSSOP/orbit/ISS/S

VPOST.html

● admin@space-track.org, S. A. I. C. (n.d.). Help Documentation. Retrieved from

https://www.space-track.org/documentation#api

25

https://www.space-track.org/documentation#api

● Technologies, U. (n.d.). Building and running a WebGL project. Retrieved from

https://docs.unity3d.com/Manual/webgl-building.html

26

