
3D Tracking Simulation of Orbiting Satellites

Doney Peters | Ivan Cisneros | Joey Hubbard | Thang Hin

While advances have been made in web applications that handle satellite
tracking and imaging, little effort has been spent on creating highly
functional and immersive simulations of the orbits of these satellites. The
aim of this project is to create an efficient satellite tracking web application
that will give users an accurate representation of the positions of satellites
and allow users to see which satellite(s) are passing over at their present
location in real-time. In addition, this web application will include a
simulation using the Unity Real-Time Development Platform. Satellite
tracking has only grown more complex over the years as more and more
satellites are launched into space, with sources estimating at more than
1800 satellites currently in orbit. As such, current satellite tracking
applications are inefficient and outdated. This project will rectify these
deficiencies and will present users with a simple web-based application of
the orbits taken by satellites.

Introduction

Satellites are mostly tracked with computer programs using what are known as TLEs or Two-Line
Elements.

TLEs are text files that contain two lines of characters and digits necessary to identify, and accurately
track where a satellite may be at a specific time of day to a certain degree of accuracy.

TLE Data

Project Pathfinder gives
users an immersive
experience by allowing
them to select satellites
from our database to view
 their coordinates, and
navigate through space
within our Unity WebGL
simulator.

We were able to integrate
all of the components of
our project together and
achieve accurate
coordinates based on
the updated TLE data at
space-track.org. Our users
will be able to see the
current position of
satellites in real time.

Results

We hope to incorporate the following additional features:

● Mobile App version

● Prediction of satellite overhead pass time

● Unique satellite textures

● Toggling sunlight effects

● Scaling time

Future Goals for Project Pathfinder

The high-level layout for this project can be broken down into four
major components:

• The database storing the two-line element files needed to calculate
the coordinates of the celestial objects.

• The server-side module that requests and receives specified TLE
data from space-track.org and parses the file,

• The server-side module calculates the actual celestial Cartesian
coordinates,.

• The front end encompassing the Unity simulation experience in
addition to satellite object information.

Project Architecture

Space-Track.org
• This website has an API that our web application was able to connect to in

order to retrieve the TLE data of the satellites that are tracked.

CelesTrak
• Their website was an important resource for researching the structure of TLEs

as well as help in deciphering the SGP4 perturbation model.

Dr. Chengwei Lei.
• Special thanks to our instructor, who has provided us with excellent feedback and

guidance throughout the year.

Acknowledgements

CSU Bakersfield
School of Natural Sciences,
Mathematics, and Engineering

Department of Computer and Electrical Engineering and Computer Science

Unity Simulation

Client/Server

MongoDB Atlas

~Client:
The client side, or user interface of the website uses basic
HTML 5 components. Additionally, the client facing
portion of the website uses the JQuery and Bootstrap
libraries to provide a clean, and simple interface for users.
When the Unity simulation is integrated into the
webpage, it is converted to javascript via the WebGL
plugin, which is a modern graphics rendering framework
for the browser. During the simulation, when a user
selects a satellite to view,

MongoDB’s document model serves as a great appliance into our project as it stores data in
JSON-like documents, which the TLE data gathered from Space-Track is formatted in.

The TLE data pulled from space-track.org will be called from the server side and sent to the
database, where it will be stored so that it can be displayed on the client side through the
simulation in Unity.

An example of a two-line element.

The most important portion of the client interface, the satellite simulation, will be written using the Unity
framework to render the Earth and all of the simulated celestial objects.

The coordinates of each satellite are passed via a JSON object into a javascript variable which Unity will
use as a reference point to determine where to render the object relative to the Earth. From this point,
Unity will also need to know the position and velocity vectors of the object as well, which the server will
be able to provide using a simple AJAX request.

From these pieces of information, Unity has successfully rendered the object and properly simulated its
orbit and speed.

~Server:
The server side program is responsible for retrieving
the TLE data in the form of JSON objects from
space-track.org with an API request. The TLEs will be
stored into MongoDB where they can be queried.
When a query is made, the server will convert the TLE
positional data into a series of latitude, longitude, and
elevation coordinates using the SPG4 perturbation
model. This result will be passed to the client side of
the web page which will be displayed for users to see
real time as well as be passed to the WebGL
simulation to render the choses satellites position.

