Binomial Coefficients

Binomial Theorem
   n
   Σ C(n,k) x(n-k) yk
   k=0
       where x and y are variables and n is a nonnegative integer.
Ex. (x + y)4

1x4y0 + 4x3y1  + 6x2y2 + 4x1y3 + 1x0y4

Corollary 1
   n
   Σ C(n,k) = 2n 
   k=0

Pascal's Identity
   C(n+1,k) = C(n,k-1) + C(n,k)

     where n and k are positive integers with n >= k.

Pascal's Triangle

 
n=0                           1
  1                          1   1
  2                        1   2   1
  3                      1   3   3   1
  4                    1   4   6   4   1
  5                  1   5  10  10   5   1
  6                1   6  15  20  15   6   1
  7              1   7  21  35  35  21   7   1
  8            1   8  28  56  70  56  28   8   1
  9          1   9  36  84 126 126  84  36   9   1
  10       1  10  45 120 210 252 210 120  45  10   1
  11     1  11  55 165 330 462 462 330 165  55  11   1
  12   1   12 66 220 495 792 924  792 495 220 66  12  1