
Review of Last Lecture

• Simplifying MIPS: Define instructions to be
same size as data word (one word) so that
they can use the same memory

– Computer actually stores programs as a series of
these 32-bit numbers

• MIPS Machine Language Instruction:
32 bits representing a single instruction

1

opcode functrs rt rd shamtR:

opcode rs rt immediateI:

Great Idea #1: Levels of
Representation/Interpretation

2

lw $t0, 0($2)
lw $t1, 4($2)
sw $t1, 0($2)
sw $t0, 4($2)

Higher-Level Language
Program (e.g. C)

Assembly Language
Program (e.g. MIPS)

Machine Language
Program (MIPS)

Hardware Architecture Description
(e.g. block diagrams)

Compiler

Assembler

Machine
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Logic Circuit Description
(Circuit Schematic Diagrams)

Architecture
Implementation

We__
are__

here._

I-Format Immediates

• immediate (16): two’s complement number

– All computations done in words, so 16-bit
immediate must be extended to 32 bits

– Green Sheet specifies ZeroExtImm or SignExtImm
based on instruction

• Can represent 216 different immediates

– This is large enough to handle the offset in a
typical lw/sw, plus the vast majority of values for
slti

3

Dealing With Large Immediates

• How do we deal with 32-bit immediates?
– Sometimes want to use immediates > ± 215 with
addi, lw, sw and slti

– Bitwise logic operations with 32-bit immediates

• Solution: Don’t mess with instruction
formats, just add a new instruction

• Load Upper Immediate (lui)
– lui reg,imm

– Moves 16-bit imm into upper half (bits 16-31) of
reg and zeros the lower half (bits 0-15)

4

lui Example

• Want: addiu $t0,$t0,0xABABCDCD

– This is a pseudo-instruction!

• Translates into:
lui $at,0xABAB # upper 16

ori $at,$at,0xCDCD # lower 16

addu $t0,$t0,$at # move

• Now we can handle everything with a 16-bit
immediate!

5

Only the assembler gets to use $at

Branching Instructions

• beq and bne

– Need to specify an address to go to

– Also take two registers to compare

• Use I-Format:

– opcode specifies beq (4) vs. bne (5)

– rs and rt specify registers

– How to best use immediate to specify
addresses?

6

opcode rs rt immediate

31 0

Branching Instruction Usage

• Branches typically used for loops (if-else,
while, for)
– Loops are generally small (< 50 instructions)

– Function calls and unconditional jumps handled
with jump instructions (J-Format)

• Recall: Instructions stored in a localized area
of memory (Code/Text)
– Largest branch distance limited by size of code

– Address of current instruction stored in the
program counter (PC)

7

PC-Relative Addressing

• PC-Relative Addressing: Use the immediate
field as a two’s complement offset to PC

– Branches generally change the PC by a small
amount

– Can specify ± 215 addresses from the PC

• So just how much of memory can we reach?

8

Branching Reach

• Recall: MIPS uses 32-bit addresses

– Memory is byte-addressed

• Instructions are word-aligned

– Address is always multiple of 4 (in bytes), meaning it
ends with 0b00 in binary

– Number of bytes to add to the PC will always be a
multiple of 4

• Immediate specifies words instead of bytes

– Can now branch ± 215 words

– We can reach 216 instructions = 218 bytes around PC
9

Branch Calculation

• If we don’t take the branch:
– PC = PC + 4 = next instruction

• If we do take the branch:
– PC = (PC+4) + (immediate*4)

• Observations:
– immediate is number of instructions to jump

(remember, specifies words) either forward (+) or
backwards (–)

– Branch from PC+4 for hardware reasons; will be
clear why later in the course

10

Branch Example (1/2)

• MIPS Code:
Loop: beq $9,$0,End

addu $8,$8,$10

addiu $9,$9,-1

j Loop

End:

• I-Format fields:
opcode = 4 (look up on Green Sheet)

rs = 9 (first operand)

rt = 0 (second operand)

immediate = ???

11

Start counting from
instruction AFTER the
branch

1

2

3

3

Branch Example (2/2)

• MIPS Code:
Loop: beq $9,$0,End

addu $8,$8,$10

addiu $9,$9,-1

j Loop

End:

Field representation (decimal):

Field representation (binary):

12

4 9 0 3

31 0

000100 01001 00000 0000000000000011

31 0

Questions on PC-addressing

• Does the value in branch immediate field
change if we move the code?

– If moving individual lines of code, then yes

– If moving all of code, then no

• What do we do if destination is > 215

instructions away from branch?

– Other instructions save us
– beq $s0,$0,far bne $s0,$0,next

next instr  j far

next: # next instr
13

J-Format Instructions (1/4)

• For branches, we assumed that we won’t want
to branch too far, so we can specify a change
in the PC

• For general jumps (j and jal), we may jump
to anywhere in memory

– Ideally, we would specify a 32-bit memory address
to jump to

– Unfortunately, we can’t fit both a 6-bit opcode
and a 32-bit address into a single 32-bit word

14

J-Format Instructions (2/4)

• Define two “fields” of these bit widths:

• As usual, each field has a name:

• Key Concepts:

– Keep opcode field identical to R-Format and
I-Format for consistency

– Collapse all other fields to make room for large
target address 15

6 26

31 0

opcode target address

31 0

J-Format Instructions (3/4)

• We can specify 226 addresses

– Still going to word-aligned instructions, so add 0b00
as last two bits (multiply by 4)

– This brings us to 28 bits of a 32-bit address

• Take the 4 highest order bits from the PC

– Cannot reach everywhere, but adequate almost all of
the time, since programs aren’t that long

– Only problematic if code straddles a 256MB boundary

• If necessary, use 2 jumps or jr (R-Format)
instead

16

J-Format Instructions (4/4)

• Jump instruction:

– New PC = { (PC+4)[31..28], target address, 00 }

• Notes:

– { , , } means concatenation
{ 4 bits , 26 bits , 2 bits } = 32 bit address

• Book uses || instead

– Array indexing: [31..28] means highest 4 bits

– For hardware reasons, use PC+4 instead of PC

17

Assembler Pseudo-Instructions

• Certain C statements are implemented
unintuitively in MIPS
– e.g. assignment (a=b) via addition with 0

• MIPS has a set of “pseudo-instructions” to make
programming easier
– More intuitive to read, but get translated into actual

instructions later

• Example:

move dst,src translated into
addi dst,src,0

18

Assembler Pseudo-Instructions

• List of pseudo-instructions:
http://en.wikipedia.org/wiki/MIPS_architecture#Pseudo_instructions

– List also includes instruction translation

• Load Address (la)
– la dst,label

– Loads address of specified label into dst

• Load Immediate (li)
– li dst,imm

– Loads 32-bit immediate into dst

• MARS has additional pseudo-instructions
– See Help (F1) for full list

19

http://en.wikipedia.org/wiki/MIPS_architecture

Assembler Register

• Problem:
– When breaking up a pseudo-instruction, the

assembler may need to use an extra register
– If it uses a regular register, it’ll overwrite whatever

the program has put into it

• Solution:
– Reserve a register ($1 or $at for “assembler

temporary”) that assembler will use to break up
pseudo-instructions

– Since the assembler may use this at any time, it’s
not safe to code with it

20

MAL vs. TAL

• True Assembly Language (TAL)

– The instructions a computer understands and
executes

• MIPS Assembly Language (MAL)

– Instructions the assembly programmer can use
(includes pseudo-instructions)

– Each MAL instruction becomes 1 or more TAL
instruction

• TAL ⊂MAL

21

Summary

• I-Format: instructions with immediates,
lw/sw (offset is immediate), and beq/bne
– But not the shift instructions
– Branches use PC-relative addressing

• J-Format: j and jal (but not jr)
– Jumps use absolute addressing

• R-Format: all other instructions

22

opcode rs rt immediateI:

opcode target addressJ:

opcode functrs rt rd shamtR:

