
Assembly Language

•Basic job of a CPU: execute lots of
instructions.

• Instructions are the primitive
operations that the CPU may execute.

•Different CPUs implement different
sets of instructions. The set of
instructions a particular CPU
implements is an Instruction Set
Architecture (ISA).

•Examples: Intel 80x86 (Pentium 4),
IBM/Motorola PowerPC (old Macintosh),
MIPS, Intel IA64, ...

Instruction Set Architectures

•Early trend was to add more and more
instructions to new CPUs to do
elaborate operations

•VAX architecture had an instruction to
multiply polynomials!

•RISC philosophy (Cocke IBM,
Patterson, Hennessy, 1980s) –
Reduced Instruction Set Computing

•Keep the instruction set small and simple,
makes it easier to build fast hardware.

• Let software do complicated operations by
composing simpler ones.

MIPS Architecture

•MIPS – semiconductor company
that built one of the first
commercial RISC architectures

•We will study the MIPS architecture
in some detail in this class (also
used in upper division courses CS
152, 162, 164)

•Why MIPS instead of Intel 80x86?

•MIPS is simple, elegant. Don’t want
to get bogged down in gritty details.

•MIPS widely used in embedded apps,
x86 little used in embedded, and more
embedded computers than PCs

Assembly Variables: Registers (1/4)

•Unlike HLL like C or Java, assembly
cannot use variables

•Why not? Keep Hardware Simple

•Assembly Operands are registers

• limited number of special locations built
directly into the hardware

• operations can only be performed on
these!

•Benefit: Since registers are directly in
hardware, they are very fast
(faster than 1 billionth of a second)

Assembly Variables: Registers (2/4)

•Drawback: Since registers are in
hardware, there are a predetermined
number of them

•Solution: MIPS code must be very
carefully put together to efficiently use
registers

•32 registers in MIPS

•Why 32? Smaller is faster

•Each MIPS register is 32 bits wide

•Groups of 32 bits called a word in MIPS

Assembly Variables: Registers (3/4)

•Registers are numbered from 0 to 31

•Each register can be referred to by
number or name

•Number references:

$0, $1, $2, … $30, $31

Assembly Variables: Registers (4/4)

•By convention, each register also has
a name to make it easier to code

•For now:

$16 - $23 $s0 - $s7

(correspond to C variables)

$8 - $15 $t0 - $t7

(correspond to temporary variables)

Later will explain other 16 register names

• In general, use names to make your
code more readable

C, Java variables vs. registers

• In C (and most High Level Languages)
variables declared first and given a type

•Example:
int fahr, celsius;
char a, b, c, d, e;

•Each variable can ONLY represent a
value of the type it was declared as
(cannot mix and match int and char
variables).

• In Assembly Language, the registers
have no type; operation determines how
register contents are treated

Comments in Assembly

•Another way to make your code more
readable: comments!

•Hash (#) is used for MIPS comments

• anything from hash mark to end of line is
a comment and will be ignored

• This is just like the C99 //

•Note: Different from C.

•C comments have format
/* comment */
so they can span many lines

Assembly Instructions

• In assembly language, each statement
(called an Instruction), executes
exactly one of a short list of simple
commands

•Unlike in C (and most other High Level
Languages), each line of assembly
code contains at most 1 instruction

• Instructions are related to operations
(=, +, -, *, /) in C or Java

•Ok, enough already…gimme my MIPS!

MIPS Addition and Subtraction (1/4)

•Syntax of Instructions:

1 2,3,4

where:

1) operation by name

2) operand getting result (“destination”)

3) 1st operand for operation (“source1”)

4) 2nd operand for operation (“source2”)

•Syntax is rigid:

• 1 operator, 3 operands

•Why? Keep Hardware simple via regularity

Addition and Subtraction of Integers (2/4)

•Addition in Assembly

•Example: add $s0,$s1,$s2 (in MIPS)

Equivalent to: a = b + c (in C)

where MIPS registers $s0,$s1,$s2 are
associated with C variables a, b, c

•Subtraction in Assembly

•Example: sub $s3,$s4,$s5 (in MIPS)

Equivalent to: d = e - f (in C)

where MIPS registers $s3,$s4,$s5 are
associated with C variables d, e, f

Addition and Subtraction of Integers (3/4)

•How to do the following C statement?

a = b + c + d - e;

•Break into multiple instructions

add $t0, $s1, $s2 # temp = b + c

add $t0, $t0, $s3 # temp = temp + d

sub $s0, $t0, $s4 # a = temp - e

•Notice: A single line of C may break up
into several lines of MIPS.

•Notice: Everything after the hash mark
on each line is ignored (comments)

Addition and Subtraction of Integers (4/4)

•How do we do this?

f = (g + h) - (i + j);

•Use intermediate temporary register

add $t0,$s1,$s2 # temp = g + h

add $t1,$s3,$s4 # temp = i + j

sub $s0,$t0,$t1 # f=(g+h)-(i+j)

Register Zero

•One particular immediate, the number
zero (0), appears very often in code.

•So we define register zero ($0 or
$zero) to always have the value 0; eg

add $s0,$s1,$zero (in MIPS)

f = g (in C)

where MIPS registers $s0,$s1 are
associated with C variables f, g

•defined in hardware, so an instruction

add $zero,$zero,$s0

will not do anything!

Immediates

• Immediates are numerical constants.

•They appear often in code, so there
are special instructions for them.

•Add Immediate:

addi $s0,$s1,10 (in MIPS)

f = g + 10 (in C)

where MIPS registers $s0,$s1 are
associated with C variables f, g

•Syntax similar to add instruction,
except that last argument is a number
instead of a register.

Immediates

•There is no Subtract Immediate in
MIPS: Why?

•Limit types of operations that can be
done to absolute minimum

• if an operation can be decomposed into a
simpler operation, don’t include it

• addi …, -X = subi …, X => so no subi

• addi $s0,$s1,-10 (in MIPS)

f = g - 10 (in C)

where MIPS registers $s0,$s1 are
associated with C variables f, g

Peer Instruction

1) Since there are only 8 local ($s) and 8
temp ($t) variables, we can’t write MIPS for
C exprs that contain > 16 vars.

2) If p (stored in $s0) were a pointer to an
array of ints, then p++; would be addi $s0
$s0 1

12
a) FF
b) FT
c) TF
d) TT
e)dunno

“And in Conclusion…”

• In MIPS Assembly Language:

•Registers replace C variables

•One Instruction (simple operation) per line

•Simpler is Better

•Smaller is Faster

•New Instructions:

add, addi, sub

•New Registers:

C Variables: $s0 - $s7

Temporary Variables: $t0 - $t9

Zero: $zero

