
Review

 In MIPS Assembly Language:

 Registers replace variables

 One Instruction (simple operation) per line

 Simpler is Better, Smaller is Faster

 New Instructions:

add, addi, sub

 New Registers:

C Variables: $s0 - $s7

Temporary Variables: $t0 - $t7

Zero: $zero



Assembly Operands: Memory

 C variables map onto registers; what 

about large data structures like arrays?

 1 of 5 components of a computer: 

memory contains such data structures

 But MIPS arithmetic instructions only 

operate on registers, never directly on 

memory.

 Data transfer instructions transfer data 

between registers and memory:

 Memory to register 

 Register to memory



Anatomy: 5 components of any Computer
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These are “data transfer” instructions…

Registers are in the datapath of the 

processor;  if operands are in memory, 

we must transfer them to the processor 

to operate on them, and then transfer 

back to memory when done.



Data Transfer: Memory to Reg (1/4)

 To transfer a word of data,
we need to specify two things:
 Register: specify this by number ($0 - $31)

or 
symbolic name ($s0,…,$t0,…)

 Memory address: more difficult

 Think of memory as a single one-dimensional 
array, so we can address it simply by supplying a 
pointer to a memory address.

 Other times, we want to be able to offset from this 
pointer.

 Remember: “Load FROM 
memory”



Data Transfer: Memory to Reg (2/4)

 To specify a memory address to copy 

from, specify two things:

 A register containing a pointer to memory

 A numerical offset (in bytes)

 The desired memory address is the sum 

of these two values.

 Example: 8($t0)

 specifies the memory address pointed to by the 
value in $t0, plus 8 bytes



Data Transfer: Memory to Reg (3/4)

 Load Instruction Syntax:

1    2,3(4)

 where

1) operation name

2) register that will receive value

3) numerical offset in bytes

4) register containing pointer to memory

 MIPS Instruction Name:

 lw (meaning Load Word, so 32 bits or one word 

are loaded at a time)



Data Transfer: Memory to Reg (4/4)

Example: lw $t0,12($s0)

This instruction will take the pointer in $s0, add 12
bytes to it, and then load the value from the 
memory pointed to by this calculated sum into 
register $t0

 Notes:
 $s0 is called the base register

 12 is called the offset

 offset is generally used in accessing elements of 
array or structure: base reg points to beginning of 
array or structure (note offset must be a constant 
known at assembly time)

Data flow



Data Transfer: Reg to Memory

 Also want to store from register into 

memory

 Store instruction syntax is identical to Load’s

 MIPS Instruction Name:

sw (meaning Store Word, so 32 bits or one 

word is stored at a time)

 Example:  sw $t0,12($s0)

This instruction will take the pointer in $s0, add 12

bytes to it, and then store the value from register $t0 

into that memory address

 Remember: “Store INTO memory”

Data flow



Pointers v. Values

 Key Concept: A register can hold any 

32-bit value.  That value can be a 

(signed) int, an unsigned int, a pointer 

(memory addr), and so on

 E.g., If you write: add $t2,$t1,$t0

then $t0 and $t1 better contain values that 

can be added

 E.g., If you write: lw $t2,0($t0)

then $t0 better contain a pointer

 Don’t mix these up!



Addressing: Byte vs. Word

 Every word in memory has an address, 
similar to an index in an array

 Early computers numbered words like C 
numbers elements of an array:
 Memory[0], Memory[1], Memory[2],  …

• Computers needed to access 8-bit bytes
as well as words (4 bytes/word)

• Today machines address memory as 
bytes, (i.e., “Byte Addressed”) hence 32-
bit (4 byte) word addresses differ by 4

• Memory[0], Memory[4], Memory[8]

Called the “address” of a word



Compilation with Memory

 What offset in lw to select A[5] in C?

 4x5=20 to select A[5]: byte v. word 

 Compile by hand using registers:
g = h + A[5];

 g: $s1, h: $s2, $s3: base address of A

 1st transfer from memory to register:

lw $t0,20($s3) # $t0 gets A[5]

 Add 20 to $s3 to select A[5], put into $t0

 Next add it to h and place in g

add $s1,$s2,$t0  # $s1 = h+A[5]



Notes about Memory

 Pitfall: Forgetting that sequential word 

addresses in machines with byte 

addressing do not differ by 1. 

 Many an assembly language programmer has 

toiled over errors made by assuming that the 

address of the next word can be found by 

incrementing the address in a register by 1 

instead of by the word size in bytes. 

 Also, remember that for both lw and sw, the 

sum of the base address and the offset must 

be

a multiple of 4 (to be word aligned)



More Notes about Memory: Alignment

 MIPS requires that all words start at byte 
addresses that are multiples of 4 bytes

 Called Alignment: objects fall on address that 
is multiple of  their size

3      2     1      

0Aligned

Not

Aligned

0, 4, 8, or Chex

Last hex digit 

of address is:

1, 5, 9, or Dhex

2, 6, A, or Ehex

3, 7, B, or Fhex



Role of Registers vs. Memory

 What if more variables than registers?

 Compiler tries to keep most frequently used 

variable in registers

 Less common variables in memory: spilling

 Why not keep all variables in memory?

 Smaller is faster:

registers are faster than memory

 Registers more versatile: 

 MIPS arithmetic instructions can read 2, operate 

on them, and write 1 per instruction

 MIPS data transfer only read or write 1 operand 

per instruction, and no operation



So Far...

 All instructions so far only manipulate 
data…we’ve built a calculator of sorts.

 In order to build a computer, we need 
ability to make decisions…

 C (and MIPS) provide labels to support 
“goto” jumps to places in code.

 C: Horrible style; MIPS: Necessary!

 Heads up: pull out some papers and 
pens, you’ll do an in-class exercise!



C Decisions: if Statements

 2 kinds of if statements in C

if (condition) clause

if (condition) clause1 else clause2

 Rearrange 2nd if into following:

if  (condition) goto L1;

clause2;
goto L2;

L1: clause1;

L2:

 Not as elegant as if-else, but same 

meaning



MIPS Decision Instructions

 Decision instruction in MIPS:

beq   register1, register2, L1

beq is “Branch if (registers are) equal” 

Same meaning as (using C): 

if  (register1==register2) goto L1

 Complementary MIPS decision instruction

bne   register1, register2, L1

bne is “Branch if (registers are) not equal” 

Same meaning as (using C): 
if  (register1!=register2) goto L1

 Called conditional branches



MIPS Goto Instruction
 In addition to conditional branches, MIPS 

has an unconditional branch:

j label

 Called a Jump Instruction: jump (or 

branch) directly to the given label without 

needing to satisfy any condition

 Same meaning as (using C): goto 

label

 Technically, it’s the same effect as:

beq $0,$0,label

since it always satisfies the condition.



Compiling C if into MIPS (1/2)

Compile by hand

if (i == j) f=g+h; 

else f=g-h;

Use this mapping:

f: $s0

g: $s1

h: $s2

i: $s3

j: $s4

Exit

i == j?

f=g+h f=g-h

(false) 
i != j

(true) 
i == j



Compiling C if into MIPS (2/2)

Final compiled MIPS code:
beq $s3,$s4,True  # branch i==j

sub $s0,$s1,$s2   # f=g-h(false)

j   Fin           # goto Fin

True: add $s0,$s1,$s2   # f=g+h (true)

Fin:

Note: Compiler automatically creates labels to 
handle decisions (branches). Generally not found 
in HLL code.

•Compile by hand

if (i == j) f=g+h; 
else f=g-h;

Exit

i == j?

f=g+h f=g-h

(false) 
i != j

(true) 
i == j



Peer 

InstructionWe want to translate *x = *y into MIPS
(x, y ptrs stored in:     $s0 $s1)

1: add $s0,   $s1, zero
2: add $s1,   $s0, zero
3: lw  $s0, 0($s1)
4: lw  $s1, 0($s0)
5: lw  $t0, 0($s1)
6: sw  $t0, 0($s0)
7: lw  $s0, 0($t0)
8: sw  $s1, 0($t0)

a) 1 or 2
b) 3 or 4
c) 56
d) 65
e) 78



“And in Conclusion…”

 Memory is byte-addressable, but lw and sw 
access one word at a time.

 A pointer (used by lw and sw) is just a 
memory address, we can add to it or 
subtract from it (using offset).

 A Decision allows us to decide what to 
execute at run-time rather than compile-
time.

 C Decisions are made using conditional 
statements within if, while, do while, 
for.

 MIPS Decision making instructions are the 
conditional branches: beq and bne.

 New Instructions:

lw, sw, beq, bne, j


