
Review

 In MIPS Assembly Language:

 Registers replace variables

 One Instruction (simple operation) per line

 Simpler is Better, Smaller is Faster

 New Instructions:

add, addi, sub

 New Registers:

C Variables: $s0 - $s7

Temporary Variables: $t0 - $t7

Zero: $zero

Assembly Operands: Memory

 C variables map onto registers; what

about large data structures like arrays?

 1 of 5 components of a computer:

memory contains such data structures

 But MIPS arithmetic instructions only

operate on registers, never directly on

memory.

 Data transfer instructions transfer data

between registers and memory:

 Memory to register

 Register to memory

Anatomy: 5 components of any Computer

Processor

Computer

Control
(“brain”)

Datapath
Registers

Memory Devices

Input

Output
Load (from)

Store (to)

These are “data transfer” instructions…

Registers are in the datapath of the

processor; if operands are in memory,

we must transfer them to the processor

to operate on them, and then transfer

back to memory when done.

Data Transfer: Memory to Reg (1/4)

 To transfer a word of data,
we need to specify two things:
 Register: specify this by number ($0 - $31)

or
symbolic name ($s0,…,$t0,…)

 Memory address: more difficult

 Think of memory as a single one-dimensional
array, so we can address it simply by supplying a
pointer to a memory address.

 Other times, we want to be able to offset from this
pointer.

 Remember: “Load FROM
memory”

Data Transfer: Memory to Reg (2/4)

 To specify a memory address to copy

from, specify two things:

 A register containing a pointer to memory

 A numerical offset (in bytes)

 The desired memory address is the sum

of these two values.

 Example: 8($t0)

 specifies the memory address pointed to by the
value in $t0, plus 8 bytes

Data Transfer: Memory to Reg (3/4)

 Load Instruction Syntax:

1 2,3(4)

 where

1) operation name

2) register that will receive value

3) numerical offset in bytes

4) register containing pointer to memory

 MIPS Instruction Name:

 lw (meaning Load Word, so 32 bits or one word

are loaded at a time)

Data Transfer: Memory to Reg (4/4)

Example: lw $t0,12($s0)

This instruction will take the pointer in $s0, add 12
bytes to it, and then load the value from the
memory pointed to by this calculated sum into
register $t0

 Notes:
 $s0 is called the base register

 12 is called the offset

 offset is generally used in accessing elements of
array or structure: base reg points to beginning of
array or structure (note offset must be a constant
known at assembly time)

Data flow

Data Transfer: Reg to Memory

 Also want to store from register into

memory

 Store instruction syntax is identical to Load’s

 MIPS Instruction Name:

sw (meaning Store Word, so 32 bits or one

word is stored at a time)

 Example: sw $t0,12($s0)

This instruction will take the pointer in $s0, add 12

bytes to it, and then store the value from register $t0

into that memory address

 Remember: “Store INTO memory”

Data flow

Pointers v. Values

 Key Concept: A register can hold any

32-bit value. That value can be a

(signed) int, an unsigned int, a pointer

(memory addr), and so on

 E.g., If you write: add $t2,$t1,$t0

then $t0 and $t1 better contain values that

can be added

 E.g., If you write: lw $t2,0($t0)

then $t0 better contain a pointer

 Don’t mix these up!

Addressing: Byte vs. Word

 Every word in memory has an address,
similar to an index in an array

 Early computers numbered words like C
numbers elements of an array:
 Memory[0], Memory[1], Memory[2], …

• Computers needed to access 8-bit bytes
as well as words (4 bytes/word)

• Today machines address memory as
bytes, (i.e., “Byte Addressed”) hence 32-
bit (4 byte) word addresses differ by 4

• Memory[0], Memory[4], Memory[8]

Called the “address” of a word

Compilation with Memory

 What offset in lw to select A[5] in C?

 4x5=20 to select A[5]: byte v. word

 Compile by hand using registers:
g = h + A[5];

 g: $s1, h: $s2, $s3: base address of A

 1st transfer from memory to register:

lw $t0,20($s3) # $t0 gets A[5]

 Add 20 to $s3 to select A[5], put into $t0

 Next add it to h and place in g

add $s1,$s2,$t0 # $s1 = h+A[5]

Notes about Memory

 Pitfall: Forgetting that sequential word

addresses in machines with byte

addressing do not differ by 1.

 Many an assembly language programmer has

toiled over errors made by assuming that the

address of the next word can be found by

incrementing the address in a register by 1

instead of by the word size in bytes.

 Also, remember that for both lw and sw, the

sum of the base address and the offset must

be

a multiple of 4 (to be word aligned)

More Notes about Memory: Alignment

 MIPS requires that all words start at byte
addresses that are multiples of 4 bytes

 Called Alignment: objects fall on address that
is multiple of their size

3 2 1

0Aligned

Not

Aligned

0, 4, 8, or Chex

Last hex digit

of address is:

1, 5, 9, or Dhex

2, 6, A, or Ehex

3, 7, B, or Fhex

Role of Registers vs. Memory

 What if more variables than registers?

 Compiler tries to keep most frequently used

variable in registers

 Less common variables in memory: spilling

 Why not keep all variables in memory?

 Smaller is faster:

registers are faster than memory

 Registers more versatile:

 MIPS arithmetic instructions can read 2, operate

on them, and write 1 per instruction

 MIPS data transfer only read or write 1 operand

per instruction, and no operation

So Far...

 All instructions so far only manipulate
data…we’ve built a calculator of sorts.

 In order to build a computer, we need
ability to make decisions…

 C (and MIPS) provide labels to support
“goto” jumps to places in code.

 C: Horrible style; MIPS: Necessary!

 Heads up: pull out some papers and
pens, you’ll do an in-class exercise!

C Decisions: if Statements

 2 kinds of if statements in C

if (condition) clause

if (condition) clause1 else clause2

 Rearrange 2nd if into following:

if (condition) goto L1;

clause2;
goto L2;

L1: clause1;

L2:

 Not as elegant as if-else, but same

meaning

MIPS Decision Instructions

 Decision instruction in MIPS:

beq register1, register2, L1

beq is “Branch if (registers are) equal”

Same meaning as (using C):

if (register1==register2) goto L1

 Complementary MIPS decision instruction

bne register1, register2, L1

bne is “Branch if (registers are) not equal”

Same meaning as (using C):
if (register1!=register2) goto L1

 Called conditional branches

MIPS Goto Instruction
 In addition to conditional branches, MIPS

has an unconditional branch:

j label

 Called a Jump Instruction: jump (or

branch) directly to the given label without

needing to satisfy any condition

 Same meaning as (using C): goto

label

 Technically, it’s the same effect as:

beq $0,$0,label

since it always satisfies the condition.

Compiling C if into MIPS (1/2)

Compile by hand

if (i == j) f=g+h;

else f=g-h;

Use this mapping:

f: $s0

g: $s1

h: $s2

i: $s3

j: $s4

Exit

i == j?

f=g+h f=g-h

(false)
i != j

(true)
i == j

Compiling C if into MIPS (2/2)

Final compiled MIPS code:
beq $s3,$s4,True # branch i==j

sub $s0,$s1,$s2 # f=g-h(false)

j Fin # goto Fin

True: add $s0,$s1,$s2 # f=g+h (true)

Fin:

Note: Compiler automatically creates labels to
handle decisions (branches). Generally not found
in HLL code.

•Compile by hand

if (i == j) f=g+h;
else f=g-h;

Exit

i == j?

f=g+h f=g-h

(false)
i != j

(true)
i == j

Peer

InstructionWe want to translate *x = *y into MIPS
(x, y ptrs stored in: $s0 $s1)

1: add $s0, $s1, zero
2: add $s1, $s0, zero
3: lw $s0, 0($s1)
4: lw $s1, 0($s0)
5: lw $t0, 0($s1)
6: sw $t0, 0($s0)
7: lw $s0, 0($t0)
8: sw $s1, 0($t0)

a) 1 or 2
b) 3 or 4
c) 56
d) 65
e) 78

“And in Conclusion…”

 Memory is byte-addressable, but lw and sw
access one word at a time.

 A pointer (used by lw and sw) is just a
memory address, we can add to it or
subtract from it (using offset).

 A Decision allows us to decide what to
execute at run-time rather than compile-
time.

 C Decisions are made using conditional
statements within if, while, do while,
for.

 MIPS Decision making instructions are the
conditional branches: beq and bne.

 New Instructions:

lw, sw, beq, bne, j

