Review

= In MIPS Assembly Language:
o Registers replace variables
= One Instruction (simple operation) per line
o Simpler is Better, Smaller is Faster

= New Instructions:
add, addi, sub

= New Registers:
C Variables: $s0 - $s7
Temporary Variables: st0 - $t7

Assembly Operands: Memory

= C variables map onto registers; what
about large data structures like arrays?

= 1 of 5components of a computer:
contains such data structures

= But MIPS arithmetic instructions only
operate on registers, never directly on
memory.

- transfer data
between registers and memory:

= Memory to register
o Register to memory

Anatomy: 5 components of any Computer

Registers are in the datapath of the
processor; if operands are in memory,
we must transfer them to the processor
to operate on them, and then transfer
back to memory when done.

Computer

Processor Memory Devices

Control [Input]
(“brain”)
Store (to)
Ped

(Datapatrg;// [Output]
Registers; | gadl (fro“.p

\

Data Transfer: Memory to Reg (1/4)

= To transfer a word of data,
we need to specify two things:
o Register: specify this by number ($0 - $31)

or
symbolic name ($s0,..,$t0,..)

= Memory address: more difficult

= Think of memory as a single one-dimensional
array, so we can address it simply by supplying a
pointer to a memory address.

= Other times, we want to be able to offset from this
pointer.

» Remember: “Load FROM

Data Transfer: Memory to Reg (2/4)

= To specify a memory address to copy
from, specify two things:

o A register containing a pointer to memory
o A numerical offset (in bytes)

= The desired memory address is the sum
of these two values.

= Example: 8 (5t0)

o specifies the memory address pointed to by the
value in $t0, plus 8 bytes

Data Transfer: Memory to Reg (3/4)

= Load Instruction Syntax:
1 2,3(4)
o where
1) operation name
2) register that will receive value
3) numerical offset in bytes
4) register containing pointer to memory

= MIPS Instruction Name:

= 1w (meaning Load Word, so 32 bits or one word
are loaded at a time

Data Transfer: Memory to Reg (4/4)

Data flow

Example: lw $t0,12 ($s0)

This instruction will take the pointer in $s0, add 12
bytes to it, and then load the value from the

memory pointed to by this calculated sum into
register $t0

= Notes:
o $s0 Is called the base reqgister

o 12 Is called the offset

o Offset Is generally used in accessing elements of
array or structure: base reg points to beginning of

Data Transfer: Reg to Memory

= Also want to store from register into

memory
o Store instruction syntax is identical to Load’s

= MIPS Instruction Name:
sw (meaning Store Word, so 32 bits or one

word Is storgd gt a Hpe)

= Example: sw $t0,12($s0)

This instruction will take the pointer in $s0, add 12
bytes to it, and then store the value from register $t0

Pointers v. Values

= Key Concept: Aregister can hold any
32-bit value. That value can be a
(signhed) int, an unsigned int, a pointer
(memory addr), and so on

o E.g., If you write: add $t2,s$t1,$t0
then $t0 and $St1 better contain values that
can be added

= E.g., If you write: 1w $t2,0($t0)
then $t 0 better contain a pointer

= Don’t mix these up!

Addressing: Byte vs. Word

= Every word in memory has an address,
similar to an index in an array

= Early computers numbered words like C
numbers elements of an array:

o Memory[0], Memory[l], Memory[Z2],
/

Called the “address” of a word

« Computers needed to access 8-bit bytes
as well as words (4 bytes/word)

 Today machines address memory as
bytes, (i.e., “ ”_% hénce 32-
bit (4 byte) word addresses differ by 4

e Memory[0], Memory[4], Memory[8]

Compilation with Memory

= What offset in 1w to select A[5] In C?
= 4x5=20to select A[5]: byte v. word

= Compile by hand using registers.
g=h+ A[5];

o g: $sl1, h: $s2, $s3:base address of A

= 1st transfer from memory to register:
lw $t0,20($s3) # $St0 gets A[5]
o Add 20 to $Ss3toselectA[5], putinto $tO

= Next add it to h and placein g
add $sl1,$s2,$5t0 # Ssl1 = h+A[5]

Notes about Memory

= Pitfall: Forgetting that sequential word
addresses in machines with byte
addressing do not differ by 1.

o Many an assembly language programmer has
toiled over errors made by assuming that the
address of the next word can be found by
Incrementing the address in a register by 1
iInstead of by the word size in bytes.

o Also, remember that for both 1w and sw, the

sum of the base address and the offset must
be

a muItiiIe of 4 Ito be word aliinedl

More Notes about Memory: Alignment

= MIPS requires that all words start at byte
addresses that are multiples of 4 bytes

Last hex digit

of address Is:
Allgned_ 0,4,8,0rC,.,

= Called ; E)bjects fall on address that
IS multiple of their size

Role of Registers vs. Memory

= What If more variables than registers?

o Compiler tries to keep most frequently used
variable in registers

= Less common variables in memory: spilling

= Why not keep all variables in memory?

= Smaller is faster:
registers are faster than memory
o Registers more versatile:

= MIPS arithmetic instructions can read 2, operate
on them, and write 1 per instruction

- MIPS data transfer only read or write 1 operand

So Far...

= All instructions so far only manipulate
data...we’ve built a of sorts.

= |n order to build a . we need
ability to make decisions..

- C (and MIPS) provide Iabels to support
” jumps to places in code.

o C: Horrible style;

= Heads up: pull out some papers and
pens, you’ll do an in-class exercise!

C Decisions: If Statements

= 2 kinds of If statements in C
if (condition) clause
if (condition) clausel else clause2

= Rearrange 2nd if into following:
if (condition) goto L1;

clauseZ2;
goto L2Z;

L1: clausel;
e

= Not as elegant as if-else, but same

MIPS Decision Instructions

= Decision instruction in MIPS:
beq registerl, register2, L1l
beq is “Branch if (registers are) equal’
Same meaning as (using C):
If (registerl==register2) goto L1
= Complementary MIPS decision instruction
bne registerl, register2, L1l

bne is “Branch if (registers are) not equal”
Same meaning as (using C):
if (registerl!=register2) goto L1

MIPS Goto Instruction

= |n addition to conditional branches, MIPS
has an '

J label

= Called a Jump Instruction: jump (or
branch) directly to the given label without
needing to satisfy any condition

= Same meaning as (using C). goto
label

= Technically, it’s the same effect as:
beg $0,$0,label

since it always satisfies the condition.

Compiling C if into MIPS (1/2)

=Compile by hand (true) @ (false)
- — [i!: -
if (1 == j) f=g+h; =] J

else f=g-h; f=g+h f=g-h

=Use this mapping: Exit

Compiling C if into MIPS (2/2)

«Compile by hand (true) 6 (false)
if (i == j) f=g+h; 177 1123
else f=g-h;

f=g+h f=g-h

=Final compiled MIPS code: 1

Exit
beq $s3,$s4,True
sub $s0,$sl1,$s2
I Fin
True: add $s0,S$sl,$s2
Fin:

Note: Compiler automatically creates labels to

handle decisions (branches). Generally not found
iIn HLL code.

Peer

Wemgtrgtdopie “x = “vinto MIPS |a) 1 or 2

(X, vy ptrs stored in: $s0 $s1) b) 3 or 4
c) 556

1l: add $s0, Ssl, zero d) 65

2: add s$s1, $s0, zero e) 78

3: 1w S$s0, 0(S=sl)

4: 1w S$sl1, 0($s0)

5: 1w S$t0, 0($sl)

6: sw St0, 0($s0)

7: 1w $s0, 0($t0)

8: sw S$sl1, 0(St0)

“And in Conclusion...”

Memory is byte-addressable, but Ilw and sw
access one word at a time.

A pointer (used by lw and sw) is just a
memory address, we can add to it or
subtract from it (using offset).

A Decision allows us to decide what to
ercute at run-time rather than compile-
Ime.

C Decisions are made using conditional
?:_tatements within if, while, do while,
or.

MIPS Decision making instructions are the
conditional branches: and

New Instructions:
lw, sw, beq, bne, j

