Review

= MIPS Machine Language Instruction:
32 bits representing a single instruction

R opcode| rs rt rd |shamt| funct
I ﬂacode rs rt immediate
J opcode target address

= Branches use PC-relative addressing,
Jumps use absolute addressing.

= Disassembly is simple and starts by
decoding opcode field. (more next lecture)

C functions

main() { _ _
int i,j,k,m; What information must
1S mule(sk); ... compiler/programmer
m = mult(i,i); ... keep track of?

/* really dumb mult function */

int mult (int mcand, int mlier) {
int product = 0;
while (mlier > 0) {
product = product + mcand;

What instructions can

mlier = mlier -1; } accomplish this?

Function Call Bookkeeping

= Registers play a major role In
keeping track of information for
function calls.

= Register conventions:
o Return address $ra
= Arguments $a0, S$al, $a2, $a3
o Return value Sv0, Svl
o Local variables $s0, $sl1, .. , $s7

Instruction Support for Functions

(a,b);... /* a,b:$s0,$s1 */

}
C int sum(int x, int y) {
return x+y;

}

address (shown 1in decimal)
1000
1004
1008
1012
1016

n MIPS, all instructions are 4
oytes, and stored in memory
just like data. So here we

show the addresses of where

U — <

Instruction Support for Functions (2/6)

... sum(a,b);... /* a,b:5s0,5s1 */

}
C int sum(int x, int y) {
return x+y;

}

address (shown 1in decimal)
1000 add $a0,$s0,$zero # x = a

M 1004 add $al,$sl,S$zero # v = b

| 1008 addi ra,Szero,1016 #Sra=1016
1012 5 sum #jump to sum
1016

S

2000 sum: add iv0|ia0|ia1

Instruction Support for Functions (3/6)

... sum(a,b);... /* a,b:5s0,5s1 */

}
C int sum(int x, int y) {
return x+y;

}

« Question: Why use - r here? Why not use 7

« Answer: sum mi%ht be called by many places, so we
can't return to a fixed place. The calling proc to sum
must be able to say “return here” somehow.

B0 — <

2000 add $v0,$a0, Sal

Instruction Support for Functions (4/6)

= Single instruction to jJump and save return address:
jump and link (7a1)

= Before:
1008 addi Sra,Szero,1016 #Sra=1016
1012 j sum #goto sum
= After:

1008 jal sum # Sra=1012,goto sum
= Why have a jal?
= Make the common case fast: function calls very common.
= Don’t have to know where code is in memory with jal!

Instruction Support for Functions (5/6)

= Syntax for §al (jump and link) is same as for
J Jump):
jal label
= jal should really be called 1aj for
“link and jJump”:

o Step 1 (link): Save address of next instruction into
Sra

= Why next instruction? Why not current one?
o Step 2 (jump): Jump to the given label

Instruction Support for Functions (6/6)

= Syntax for §r (Jump register):
jr register
= |nstead of providing a label to jump to, the jr
Instruction provides a register which contains
an address to jump to.

= Very useful for function calls:
= jal stores return address in register (5rz2)
© 9r Sra jumps back to that address

Nested Procedures (1/2)

= Something called sumSquare, now
sumSquare IS calling mult.

= S0 there's a value in $ra that sumSquare

wants to jump back to, but this will be
overwritten by the call to mult.

= Need to save sumSquare return address
before call to mult.

Nested Procedures (2/2)

= |n general, may need to save some other
iInfo in addition to S ra.

= When a C program is run, there are 3
Important memory areas allocated:

= Static: Variables declared once per program,
cease to exist only after execution completes.
E.g., C globals

= Heap: Variables declared dynamically via malloc

= Stack: Space to be used by procedure during
execution; this is where we can save register
values

C Memory Allocation

Addres$9
Stack Space for local vars, saved
$sp procedure information
stack
pointer

Explicitly created space,
Heap | je. malloc()

Variables declared once per
Static | program; e.g., globals
(doesn’t change size)

Using the Stack (1/2)

= S0 we have a register which always
points to the last used space in the stack.

= To use stack, we decrement this pointer by
the amount of space we need and then fill
It with info.

= S0, how do we compile this?

int sumSquare(int x, int y) {
return mult(x,x)+ y;

}

Using the Stack (2/2)

¥ Hand-comp”e int sumSquare (int x, int y) {

sumSquare:

“push”

(11 pop”

return mult(x,x)+ y; }

addi $sp,$sp,-8 # space on stack
sw Sra, 4($sp) # save ret addr
sw Sal, 0(Ssp) # save y

add $al, $a0,S$zero # mult (x,x)
jal mult # call mult
lw Sal, 0 (Ssp) # restore y

add $vO0,sSv0,$al # mult()+vy

lw Sra, 4 (Ssp) # get ret addr
addi $sp,$sp,8 # restore stack

Steps for Making a Procedure Call

1. Save necessary values onto
stack.

2. Assign argument(s), if any.

3. jal call

4. Restore values from stack.

Rules for Procedures

= Called with a ja1 Instruction,
returns witha jr Sra

= Accepts up to 4 arguments in
Sa0, Sal, $a2 and $a3

= Return value Is always in $v0
(and If necessary in Sv1)

= Must follow register conventions
So what are they?

Basic Structure of a Function

Prologue
entry label:
addi Ssp,$sp, -framesize

sw $Sra, framesize-4($sp) # save Sra
save other regs if need be

ra

Body - - . (call other functions...)

Epilogue memory
restore other regs if need be
lw Sra, framesize-4($sp) # restore Sra

addi S$sp,$sp, framesize
jr Sra

MIPS Registers

The constant O 0 $zero
Reserved for Assembler $1 $at
Return Values $2-$3 $vO-
$vl
Arguments $4-37

$a0-%a3
Temporary $8-$15

$tO-$t7

Saved $16-$23 $s0-
$s7
More Temporary $24-$25 $t8-$t9
Used by Kernel $26-27 $KkO-
$k1

Global Pointer $28 $gp

Other Registers

= Sat: may be used by the assembler at any
time; unsafe to use

= Sk0-$k1: may be used by the OS at any
time; unsafe to use

= Sgp, $£p: don't worry about them

= Note: Feel free to read up on $Sgp and $£p

INn Appendix A, but you can write perfectly
good MIPS code without them.

Peer Instruction

int fact(int n) {

if(n == 0) return 1; else return(n*fact(n-1)) ;}
When translating this to MIPS... 123
1) We COULD copy $a0 to Sal (& then not z; ggg
store $a0 or $al on the stack) to store n FTE
across recursive calls. g; g
2) We MUST save $a0 on the stack since it | 5y ppp
gets changed. d) TET

“And in Conclusion...”

= Functions called with a1, return with 7= Sra.
= The stack is your friend: Use it to save anything
you need. Just leave it the way you found it!

= |nstructions we know so far...
Arithmetic: add, addi, sub, addu, addiu, subu
Memory: lw, sw, lb, sb
Decision. beq, bne, slt, slti, sltu, sltiu
Unconditional Branches (Jumps): 5, jal, Jr

= Registers we know so far
= All of them!

