
 MIPS Machine Language Instruction:

32 bits representing a single instruction

 Branches use PC-relative addressing,

Jumps use absolute addressing.

 Disassembly is simple and starts by
decoding opcode field. (more next lecture)

opcode rs rt immediate

opcode rs rt rd functshamtR

I

J target addressopcode

Review

C functions

main() {

int i,j,k,m;

...

i = mult(j,k); ...

m = mult(i,i); ...

}

/* really dumb mult function */

int mult (int mcand, int mlier){

int product = 0;

while (mlier > 0) {

product = product + mcand;

mlier = mlier -1; }

return product;

}

What information must

compiler/programmer

keep track of?

What instructions can

accomplish this?

Function Call Bookkeeping

 Registers play a major role in

keeping track of information for

function calls.

 Register conventions:
 Return address $ra

 Arguments $a0, $a1, $a2, $a3

 Return value $v0, $v1

 Local variables $s0, $s1, … , $s7

 The stack is also used; more later.

Instruction Support for Functions

(1/6)... sum(a,b);... /* a,b:$s0,$s1 */

}

int sum(int x, int y) {

return x+y;

}

address (shown in decimal)

1000

1004

1008

1012

1016

…

2000

2004

C

M

I

P

S

In MIPS, all instructions are 4

bytes, and stored in memory

just like data. So here we

show the addresses of where

the programs are stored.

Instruction Support for Functions (2/6)

... sum(a,b);... /* a,b:$s0,$s1 */

}

int sum(int x, int y) {

return x+y;

}

address (shown in decimal)

1000 add $a0,$s0,$zero # x = a

1004 add $a1,$s1,$zero # y = b

1008 addi $ra,$zero,1016 #$ra=1016

1012 j sum #jump to sum

1016

…

2000 sum: add $v0,$a0,$a1

2004 jr $ra # new instruction

C

M

I

P

S

Instruction Support for Functions (3/6)

... sum(a,b);... /* a,b:$s0,$s1 */

}

int sum(int x, int y) {

return x+y;

}

2000 sum: add $v0,$a0,$a1

2004 jr $ra # new instruction

• Question: Why use jr here? Why not use j?

• Answer: sum might be called by many places, so we
can’t return to a fixed place. The calling proc to sum
must be able to say “return here” somehow.

C

M

I

P

S

Instruction Support for Functions (4/6)

 Single instruction to jump and save return address:
jump and link (jal)

 Before:
1008 addi $ra,$zero,1016 #$ra=1016

1012 j sum #goto sum

 After:
1008 jal sum # $ra=1012,goto sum

 Why have a jal?

 Make the common case fast: function calls very common.

 Don’t have to know where code is in memory with jal!

Instruction Support for Functions (5/6)

 Syntax for jal (jump and link) is same as for

j (jump):

jal label

 jal should really be called laj for

“link and jump”:

 Step 1 (link): Save address of next instruction into
$ra

 Why next instruction? Why not current one?

 Step 2 (jump): Jump to the given label

Instruction Support for Functions (6/6)

 Syntax for jr (jump register):

jr register

 Instead of providing a label to jump to, the jr

instruction provides a register which contains

an address to jump to.

 Very useful for function calls:

 jal stores return address in register ($ra)

 jr $ra jumps back to that address

Nested Procedures (1/2)

int sumSquare(int x, int y) {

return mult(x,x)+ y;

}

 Something called sumSquare, now

sumSquare is calling mult.

 So there’s a value in $ra that sumSquare

wants to jump back to, but this will be
overwritten by the call to mult.

 Need to save sumSquare return address

before call to mult.

Nested Procedures (2/2)

 In general, may need to save some other
info in addition to $ra.

 When a C program is run, there are 3

important memory areas allocated:

 Static: Variables declared once per program,

cease to exist only after execution completes.

E.g., C globals

 Heap: Variables declared dynamically via malloc

 Stack: Space to be used by procedure during

execution; this is where we can save register

values

C Memory Allocation

0

Address

Code Program (doesn’t change size)

Static
Variables declared once per

program; e.g., globals

(doesn’t change size)

Heap
Explicitly created space,

i.e., malloc()

Stack
Space for local vars, saved

procedure information
$sp

stack

pointer

Using the Stack (1/2)

 So we have a register $sp which always

points to the last used space in the stack.

 To use stack, we decrement this pointer by

the amount of space we need and then fill

it with info.

 So, how do we compile this?

int sumSquare(int x, int y) {

return mult(x,x)+ y;

}

Using the Stack (2/2)

 Hand-compile
sumSquare:

addi $sp,$sp,-8 # space on stack

sw $ra, 4($sp) # save ret addr

sw $a1, 0($sp) # save y

add $a1,$a0,$zero # mult(x,x)

jal mult # call mult

lw $a1, 0($sp) # restore y

add $v0,$v0,$a1 # mult()+y

lw $ra, 4($sp) # get ret addr

addi $sp,$sp,8 # restore stack

jr $ra

mult: ...

int sumSquare(int x, int y) {
return mult(x,x)+ y; }

“push”

“pop”

Steps for Making a Procedure Call

1. Save necessary values onto

stack.

2. Assign argument(s), if any.

3. jal call

4. Restore values from stack.

Rules for Procedures

 Called with a jal instruction,

returns with a jr $ra

 Accepts up to 4 arguments in
$a0, $a1, $a2 and $a3

 Return value is always in $v0

(and if necessary in $v1)

 Must follow register conventions

So what are they?

Basic Structure of a Function

entry_label:
addi $sp,$sp, -framesize
sw $ra, framesize-4($sp) # save $ra
save other regs if need be

...

restore other regs if need be
lw $ra, framesize-4($sp) # restore $ra
addi $sp,$sp, framesize
jr $ra

Epilogue

Prologue

Body (call other functions…)

ra

memory

MIPS Registers

The constant 0 $0 $zero
Reserved for Assembler $1 $at
Return Values $2-$3 $v0-
$v1
Arguments $4-$7

$a0-$a3
Temporary $8-$15

$t0-$t7
Saved $16-$23 $s0-
$s7
More Temporary $24-$25 $t8-$t9
Used by Kernel $26-27 $k0-
$k1
Global Pointer $28 $gp
Stack Pointer $29 $sp
Frame Pointer $30 $fp
Return Address $31

$ra

(From COD green insert)

Other Registers

 $at: may be used by the assembler at any

time; unsafe to use

 $k0-$k1: may be used by the OS at any

time; unsafe to use

 $gp, $fp: don’t worry about them

 Note: Feel free to read up on $gp and $fp

in Appendix A, but you can write perfectly

good MIPS code without them.

Peer Instruction

When translating this to MIPS…
1) We COULD copy $a0 to $a1 (& then not

store $a0 or $a1 on the stack) to store n
across recursive calls.

2) We MUST save $a0 on the stack since it
gets changed.

3) We MUST save $ra on the stack since
we need to know where to return to…

123
a) FFF
b) FFT
c) FTF
c) FTT
d) TFF
d) TFT
e) TTF
e) TTT

int fact(int n){

if(n == 0) return 1; else return(n*fact(n-1));}

“And in Conclusion…”

 Functions called with jal, return with jr $ra.

 The stack is your friend: Use it to save anything

you need. Just leave it the way you found it!

 Instructions we know so far…

Arithmetic: add, addi, sub, addu, addiu, subu

Memory: lw, sw, lb, sb

Decision: beq, bne, slt, slti, sltu, sltiu

Unconditional Branches (Jumps): j, jal, jr

 Registers we know so far

 All of them!

