[label:] mnemonic [operands] [#comment]Label: (optional) Marks the address of a memory location, must have a colon; Typically appears in data and text segments
L1: addiu $t0, $t0, 1 #increment $t0
# Sample Program Template # Filename: # Author: # Date: # Description: # Register Usage: ################# Data segment ##################### .data . . . ################# Code segment ##################### .text .globl main main: # main program entry . . . li $v0, 10 # Exit program syscall
Syntax: [name:] directive initializer [, initializer] . . . var1: .WORD 10All initializers become binary data in memory
.BYTE # Stores values as 8-bit bytes .HALF # Stores values as 16-bit values aligned on half-word boundary .WORD # stores values as 32-bit values aligned on word boundary .WORD w:n # Stores values 32-bit value w into n consecutive words # aligned on a word boundary. .FLOAT # Stores values as single-precision floating point .DOUBLE # Stores values as double-precision floating point .ASCII # Allocates a sequence of bytes for an ASCII string .ASCIIZ # .ASCII directive but adds a NULL char at end of string .SPACE n # Allocates space of n uninitialized bytes in the data segment .ALIGN n # Aligns the next data definition on a 2n byte boundary
MIPS instructions and integers occupy 4 bytes (a word)
Alignment means the address is a multiple of the size; e.g., Word address should be a multiple of 4 (Least significant 2 bits of a word aligned address should be 00); Halfword address should be a multiple of 2
Example Symbol Table .DATA var1: .BYTE 1, 2,'Z' str1: .ASCIIZ "My String\n" var2: .WORD 0x12345678 .ALIGN 3 var3: .HALF 1000
1) Little Endian Byte Ordering where memory address is the address of least significant byte. Example: Intel IA-32, Alpha
2) Big Endian Byte Ordering where memory address is the address of most significant byte. Example: SPARC, PA-RISC
MIPS can operate with both byte orderings
MIPS provides a special syscall instruction to obtain services from the operating system
Services are provided in SPIM using the syscall system services
Load the service number in register $v0
Load argument values, if any, in registers $a0, $a1, etc.
Issue the syscall instruction
Retrieve return values, if any, from result registers
#################################################### # Reading and Printing an Integer ################# Code segment ##################### .text .globl main main: # main program entry li $v0, 5 # Read integer syscall # $v0 = value read move $a0, $v0 # $a0 = value to print li $v0, 1 # Print integer syscall li $v0, 10 # Exit program syscall
#################################################### # Reading and Printing a String # ################# Data segment ##################### .data str: .space 10 # array of 10 bytes ################# Code segment ##################### .text .globl main main: # main program entry la $a0, str # $a0 = address of str li $a1, 10 # $a1 = max string length li $v0, 8 # read string syscall li $v0, 4 # Print string str syscall li $v0, 10 # Exit program syscall
#################################################### # Summing three integers # # Objective: Computes the sum of three integers. # Input: Requests three numbers. # Output: Outputs the sum. ################### Data segment ################### .data prompt: .asciiz "Please enter three numbers: \n" sum_msg: .asciiz "The sum is: " ################### Code segment ################### .text .globl main main: la $a0,prompt # display prompt string li $v0,4 syscall li $v0,5 # read 1st integer into $t0 syscall move $t0,$v0 li $v0,5 # read 2nd integer into $t1 syscall move $t1,$v0 li $v0,5 # read 3rd integer into $t2 syscall move $t2,$v0 addu $t0,$t0,$t1 # accumulate the sum addu $t0,$t0,$t2 la $a0,sum_msg # write sum message li $v0,4 syscall move $a0,$t0 # output sum li $v0,1 syscall li $v0,10 # exit syscall
####################################################### # Objective: Convert lowercase letters to uppercase # Input: Requests a character string from the user. # Output: Prints the input string in uppercase. ################### Data segment ##################### .data name_prompt: .asciiz "Please type your name: " out_msg: .asciiz "Your name in capitals is: " in_name: .space 31 # space for input string ################### Code segment ##################### .text .globl main main: la $a0,name_prompt # print prompt string li $v0,4 syscall la $a0,in_name # read the input string li $a1,31 # at most 30 chars + 1 null char li $v0,8 syscall la $a0,out_msg # write output message li $v0,4 syscall la $t0,in_name loop: lb $t1,($t0) beqz $t1,exit_loop # if NULL, we are done blt $t1,'a',no_change bgt $t1,'z',no_change addiu $t1,$t1,-32 # convert to uppercase: 'A'-'a'=-32 sb $t1,($t0) no_change: addiu $t0,$t0,1 # increment pointer j loop exit_loop: la $a0,in_name # output converted string li $v0,4 syscall li $v0,10 # exit syscall
swap(a,10)In assembly you must:
Address MIPS Instruction Assembly Language 00400020 lui $1, 0x1001 la $a0, a 00400024 ori $4, $1, 0 00400028 ori $5, $0, 10 li $a1,10 0040002C jal 0x10000f jal swap 00400030 . . . # return here swap: 0040003C sll $8, $5, 2 sll $t0,$a1,2 00400040 add $8, $8, $4 add $t0,$t0,$a0 00400044 lw $9, 0($8) lw $t1,0($t0) 00400048 lw $10,4($8) lw $t2,4($t0) 0040004C sw $10,0($8) sw $t2,0($t0) 00400050 sw $9, 4($8) sw $t1,4($t0) 00400054 jr $31 jr $ra
Parameter passing is complicated in Assembly since you DO EVERYTHING!
By convention, registers $s0, $s1, ... , $s7 should be preserved by callee
registers $sp, $fp, and $ra should also be preserved
Caller-saved means registers are saved by the caller in the caller's stack frame before making a procedure call
By convention, registers $t0, ... $t9 should be preserved by caller
########################################################## # Selection Sort Procedure # Objective: Sort array using selection sort algorithm # Input: $a0 = pointer to first, $a1 = pointer to last # Output: array is sorted in place ########################################################## sort: addiu $sp, $sp, -4 # allocate one word on stack sw $ra, 0($sp) # save return address on stack top: jal max # call max procedure lw $t0, 0($a1) # $t0 = last value sw $t0, 0($v0) # swap last and max values sw $v1, 0($a1) addiu $a1, $a1, -4 # decrement pointer to last bne $a0, $a1, top # more elements to sort lw $ra, 0($sp) # pop return address addiu $sp, $sp, 4 jr $ra # return to caller ########################################################## # Max Procedure # Objective: Find the address and value of maximum element # Input: $a0 = pointer to first, $a1 = pointer to last # Output: $v0 = pointer to max, $v1 = value of max ########################################################## max: move $v0, $a0 # max pointer = first pointer lw $v1, 0($v0) # $v1 = first value beq $a0, $a1, ret # if (first == last) return move $t0, $a0 # $t0 = array pointer loop: addi $t0, $t0, 4 # point to next array element lw $t1, 0($t0) # $t1 = value of A[i] ble $t1, $v1, skip # if (A[i] <= max) then skip move $v0, $t0 # found new maximum move $v1, $t1 skip: bne $t0, $a1, loop # loop back if more elements ret: jr $ra
/* factorial function */ int fact(int n) { if (n < 2) return 1; else return (n*fact(n-1)); /* nothing happens after the recursive call */ }
fact: slti $t0,$a0,2 # (n < 2)? beq $t0,$0,else # if false branch to else li $v0,1 # $v0 = 1 jr $ra # return to caller else: addiu $sp,$sp,-8 # allocate 2 words on stack sw $a0,4($sp) # save argument n sw $ra,0($sp) # save return address addiu $a0,$a0,-1 # argument = n-1 jal fact # call fact(n-1) lw $a0,4($sp) # restore argument lw $ra,0($sp) # restore return address mul $v0,$a0,$v0 # $v0 = n*fact(n-1) addi $sp,$sp,8 # free stack frame jr $ra # return to caller