Senior Project Report

Carlos Sandoval Jacob Acosta John Pocasangre
Andrew Attia Ibrahim

May 17, 2024

Abstract

This project presents the development and implementation of a secure cloud
storage system enhanced with facial recognition authentication. The system com-
bines OAuth2 authentication with advanced facial recognition technology to create
a robust dual-layer security framework. Our implementation utilizes a microservices
architecture built with Go and Next.js, incorporating sophisticated facial recogni-
tion algorithms that employ multiple comparison metrics including Euclidean dis-
tance, Pearson Correlation Coefficient (PCC), and Cosine Similarity.

The facial recognition system achieves high accuracy through a weighted scor-
ing approach, with PCC contributing 40%, Euclidean distance 30%, and Cosine
Similarity 30% to the final authentication decision. Security is maintained through
comprehensive encryption protocols, utilizing AES-128 encryption with PBKDF2-
derived keys and unique salt values for each user. The system architecture is con-
tainerized using Docker, ensuring consistent deployment and scalability across dif-
ferent environments.

Our implementation demonstrates significant advantages in both security and
user experience, successfully addressing common challenges in biometric authenti-
cation systems while maintaining robust data protection. The system’s modular
design and comprehensive testing framework ensure reliability and maintainability,
while its scalable architecture supports future enhancements and additional security

features.

Contents
1 Introduction to Facial Recognition
2 Enhanced Security Measures

3 Backend/Database Design
3.1 PostgreSQL
3.1.1 Database Connection and Health Monitoring
3.1.2 User Management Implementation
3.1.3 Facial Recognition Integration
3.1.4 Storage Management
3.2 Golang Implementation Lo
3.2.1 Concurrency Benefits 0oL
3.2.2 Database Integration oo
3.2.3 Performance Optimization

3.2.4 API Development with Gin

4 Introduction to Next.js
4.1 Why Next.js? o
4.2 Server-Side Rendering Benefits
4.3 Integration with React and Tailwind CSS.
4.3.1 React Components,
4.3.2 Tailwind CSS
4.4 Static Site Generationo
4.4.1 Hybrid Rendering Approach
4.4.2 Incremental Static Regeneration (ISR)

4.5 Deployment and Scalability 0oL

5 Integrating Facial Recognition with the Frontend
5.1 Technical Architecture Overview

5.2 Component Architecture oL

5.2.1 Primary Components
5.2.2 Image Capture System
5.2.3 Enhanced Authentication Flow
5.3 Docker Compose
5.3.1 Frontend Service Configuration
5.3.2 Backend Service Architecture
5.3.3 Database and Storage Services
5.3.4 Specialized Processing Service

5.3.5 Networking and Persistence

6 User Authentication

7 Session Management Techniques

7.1 Session Implementation
7.2 Session Storage
7.3 Session Securityo
7.4 Session Management Workflow
7.5 Protecting Against Common Attacks

7.6 Session Scalability

8 Facial Detection and Analysis/Recognition
9 Data Security Implementation
10 Database Operations

11 Authentication Pipeline

11.1 Authentication Pipeline Functions

12 Conclusion

31

31
31
32
32
33
34
34

34

36

37

37
38

39

1 Introduction to Facial Recognition

Facial recognition technology has fundamentally transformed the way people interact
with devices and access services, seamlessly integrating security with convenience. At its
core, facial recognition involves the automated identification or verification of a person
from a digital image or video frame. This biometric technology analyzes unique features
of a person’s face—such as the distance between the eyes, the shape of the cheekbones,
and the contour of the lips—to create a facial signature that can be compared against a
database.

The journey of facial recognition began in the 1960s when researchers started exploring
the potential for computers to recognize human faces. Early efforts were rudimentary,
relying heavily on manual coding of facial features. In 1964 and 1965, Woody Bledsoe,
along with Helen Chan Wolf and Charles Bisson, pioneered the use of computers for
facial recognition, albeit with significant human assistance in feature extraction. The
1970s witnessed the development of more sophisticated models capable of automating
certain aspects of feature extraction. However, it was not until the 1990s, with the
advent of the eigenface approach developed by Matthew Turk and Alex Pentland, that
facial recognition made significant strides. This method utilized principal component
analysis to reduce the dimensionality of facial data, making it computationally feasible
to process and recognize faces in real-time.

The 21st century brought exponential advancements in computational power and ma-
chine learning algorithms. The rise of deep learning and convolutional neural networks
(CNNs) revolutionized facial recognition by enabling systems to learn complex patterns
from vast datasets without explicit programming. Companies like Facebook and Google
leveraged these technologies to tag photos and organize images, enhancing user experi-
ences on social media platforms.

Facial recognition has transcended government and industrial applications to become
a ubiquitous part of daily life. One of the most significant milestones in bringing facial
recognition to the masses was its integration into smartphones, particularly with the

introduction of Apple’s iPhone X in 2017. Apple’s Face ID technology marked a piv-

otal moment in consumer biometrics. Replacing the Touch ID fingerprint sensor, Face
ID offered users a more intuitive and secure way to unlock their phones, authenticate
payments, and access sensitive information. Utilizing a combination of infrared cameras,
flood illuminators, and dot projectors, the iPhone creates a detailed depth map of the
user’s face. This TrueDepth camera system can accurately recognize a face even in low-
light conditions and adapt to changes in appearance, such as wearing glasses or growing
a beard.

The integration of facial recognition into smartphones has significantly streamlined
user interactions with technology. Users no longer need to remember complex passwords
or patterns; a simple glance at their device suffices. This ease of access extends to
various applications, including mobile payments where services like Apple Pay use Face
ID to authenticate transactions, making purchases faster and more secure. Sensitive apps,
such as banking and personal health records, leverage facial recognition for an additional
layer of security. Moreover, devices can customize user experiences based on recognition,
adjusting settings or preferences automatically.

While facial recognition enhances convenience, it also raises important security and
privacy questions. Apple addressed these concerns by implementing robust security mea-
sures. Facial data is stored securely in the device’s Secure Enclave, ensuring that it never
leaves the user’s phone or gets uploaded to cloud servers. Additionally, Face ID requires
the user’s eyes to be open and looking at the device, preventing unauthorized access when

the user is not attentive.

2 Enhanced Security Measures

Security has been a necessity in the modern world and continues to grow and prove
its value as time progresses. Nowadays the internet stores a myriad of information on
the internet, and it’s up to engineers to prevent people with bad intentions from stealing
and taking advantage of the information they may access. The server for our application

was set up with Ubuntu 22.04 LTS and configured in Apache2. Our server also utilizes

Cloudflare and Certbot HTTPS certification for additional protection. On Cloudflare,
encryption was configured to a strict mode instead of flexible mode to enhance the secu-
rity of our site. The setup ensures that communications between the server and users are

fully encrypted, providing users with greater peace of mind for their data security.

For the front-end development of the website, HTML and Tailwind CSS were used
to create a responsive user interface. Tailwind CSS is a utility-first CSS framework that

provides a set of predefined classes, making it easier to style components directly within

the HTML.

Our project structure includes multiple HTML files, such as about.html, facialrec.html,
login.html, and main.html, each serving different parts of the application. Tailwind
CSS is integrated through the build.css file, which is generated from the utility classes
used in the HTML files.

By using Tailwind CSS, consistent styling was implemented across the entire ap-
plication efficiently. The utility classes allowed for rapid prototyping and adjustments,

ensuring that the user interface remained both functional and aesthetically pleasing.

The main HTML files include various elements such as navigation bars, forms, and
content sections that are styled using Tailwind CSS. This integration not only streamlines
the development process but also enhances the user experience by providing a clean and

modern interface.

3 Backend/Database Design

Our database design enables users to sign in and have their files and folders linked directly

to their accounts. The schema supports a hierarchical structure, allowing users to create

faceAuthentication
facelD
featureVector
vectorFormat
regData
lastUsed

authToken

Fhes userlD ¥
fileName
fileType T

I
fil 2

‘:zafm\e userEmail
astModifiedData userPass
—{folderiD FK userName
useriD FK

signupDate
lastLogin

Folder

folderName
creationDate

userlD (X
L—|ParentFolderld (K

Figure 1: Database Schema

folders within folders using a recursive foreign key. This approach mirrors the organization
of a typical file directory in an operating system, offering a robust and intuitive way to
manage and navigate stored files. By linking all folders and files to a user’s unique
‘userID‘ and the parent folder’s ‘folderID‘, the database facilitates various queries that
allow users to view, access, and interact with their files and folders seamlessly.

Files in the system are enriched with attributes such as file type, upload time, and
last modified time. These attributes provide users with essential, real-time information
about their files, enhancing usability and helping them manage their data effectively.
Furthermore, all stored data is associated with the user’s facial recognition data, which
is treated as highly sensitive information. This data is encrypted for security purposes
and is decrypted only when required, ensuring the highest level of protection for user
information.

The backend implementation uses Golang in conjunction with a PostgreSQL database
to deliver a secure and efficient system. The backend serves as the core for passing data
between the database and the frontend, ensuring smooth interaction and functionality.
An API, developed using the Gin framework in Golang, enables the implementation of
various endpoints for diverse use cases. These include user authentication, file uploads,
and file downloads, forming the backbone of the application’s functionality.

By integrating the frontend and backend through these APIs, the system achieves
seamless operation, enabling users to interact with their data securely and efficiently.

This cohesive architecture ensures a functional and secure backend that prioritizes user

privacy and data protection, delivering a reliable cloud-based file storage solution.

3.1 PostgreSQL

PostgreSQL serves as the backbone of our system’s database architecture, chosen for its
robustness, scalability, and advanced feature set. Known for its reliability and support for
complex queries, PostgreSQL is an ideal choice for managing large volumes of structured
data. Its open-source nature and active community further enhance its appeal, ensuring
continuous updates and improvements that keep it at the forefront of modern database
technology.

One of the key reasons for selecting PostgreSQL is its powerful support for advanced
data types and indexing options. Features such as JSON/JSONB support enable efficient
handling of semi-structured data, making PostgreSQL highly versatile. Additionally, its
ability to handle recursive queries and foreign keys aligns perfectly with our requirement
to implement a hierarchical folder structure. This makes it a natural fit for applications
where the organization of data in nested relationships is a core component.

Our implementation of PostgreSQL is facilitated through a Go service layer, ensuring
efficient and seamless database operations. The use of the ‘pgx‘ driver further enhances
performance, offering fast connection management and robust support for PostgreSQL-
specific features. By leveraging ‘pgx‘, our system achieves lower latency and improved
query execution times, which are crucial for a responsive user experience.

The database interface is built around a service pattern, which ensures a clear sep-
aration of concerns within the application. This pattern enables type-safe operations,
reducing the risk of runtime errors and improving code maintainability. With this struc-
tured approach, developers can work more efficiently, focusing on specific tasks without

being bogged down by unnecessary complexities.

3.1.1 Database Connection and Health Monitoring

The project’s database connection is established using environment variables for config-

uration, ensuring security and flexibility across different deployment environments. The

connection string is constructed dynamically, with the required parameters such as user-
name, password, host, port, and database name retrieved from environment variables.
This approach allows the system to be easily deployed in different environments, such as
development, staging, and production, without the need to hard-code sensitive database
credentials. The use of environment variables also enhances the overall security of the
system by ensuring that no sensitive information is stored in the codebase.
Additionally, the project has implemented a health check mechanism that monitors
the database connectivity. This mechanism uses the ‘PingContext® function provided by
the database driver to send a ping to the database and check its responsiveness. If the
database is unreachable, the health check returns an "unhealthy” status along with an
error message. If the database connection is active, the health check returns a "healthy”
status. This health check mechanism is crucial for monitoring the system’s overall health
and ensuring that the database connection remains active and reliable, even in the face

of network or infrastructure failures.

3.1.2 User Management Implementation

The user management system is implemented through a series of specialized functions
that handle various aspects of user data. The system includes functionality for user
creation and verification, as well as authentication and session management.

For user creation and verification, the system provides a function called ‘AddUser’
that takes in a user’s first name, last name, email, authentication token, and profile
picture, and inserts this information into the database. The function uses a SQL query
to insert the user data and returns the generated user ID, or an error if the operation
fails.

The authentication and session management functionality is handled through the
‘UpdateLastLogin‘ function. This function updates the last login timestamp for a user
in the database, given their email address. This allows the system to track user activity
and sessions, which is important for security and monitoring purposes.

By implementing these specialized functions, the user management system is able to

10

efficiently and securely handle the storage and manipulation of user data, which is a
critical component of the overall application. The use of parameterized SQL queries and
the separation of concerns into distinct functions helps to ensure the system is robust,

maintainable, and secure.

3.1.3 Facial Recognition Integration

Our database implementation includes functionality specifically designed to manage facial
recognition data efficiently. One aspect of this implementation is the ability to verify if
a user’s face has already been scanned. This is achieved by querying the database to
retrieve the value of a specific field, ‘faceScanned‘, which is associated with the user.
The system uses this information to determine whether the user’s facial data has been
processed, ensuring streamlined and accurate recognition workflows.

Another important feature of the database system is the capability to update the
‘faceScanned’ status for a user. This functionality enables the system to toggle the
value of the ‘faceScanned‘ field based on the user’s activity or system requirements. By
executing an update query, the database efficiently adjusts the status, ensuring that the
information remains current and reflects the latest state of user engagement with the
facial recognition system.

These capabilities demonstrate the database’s role in supporting seamless and adap-
tive facial recognition processes. By integrating querying and updating mechanisms, the

system ensures both reliability and flexibility in handling user data.

3.1.4 Storage Management

The system manages user storage through bucket assignments and profile management
through MinlIO. This implementation provides a robust foundation for user management,
facial recognition integration, and storage management while maintaining data integrity
and security. The use of prepared statements and parameterized queries throughout the
implementation helps prevent SQL injection attacks, while the service interface pattern

ensures maintainable and testable code.

11

The database structure supports the core functionalities of our application, including
user authentication, facial recognition status tracking, and secure file storage manage-
ment. Each function is designed to handle specific aspects of the application’s data needs

while maintaining proper error handling and type safety through Go’s strong type system.

3.2 Golang Implementation

The decision to implement the backend using Go (Golang) was driven by several key
advantages that align with our project’s requirements. Go’s concurrent programming
model, excellent performance characteristics, and robust standard library made it an

ideal choice for our file storage and facial recognition system.

3.2.1 Concurrency Benefits

Go’s goroutines and channels provide a powerful mechanism for handling multiple con-
current operations, which is crucial for our system’s performance. This is particularly
important when dealing with simultaneous file uploads, downloads, and facial recognition

processes.

3.2.2 Database Integration

Go’s database/sql package, combined with the pgx driver, provides type-safe database
operations and efficient connection pooling. This integration allows for clean and main-
tainable database interactions through several key features. Strong type safety pre-
vents runtime errors, while built-in connection pooling improves performance throughout
database operations. Additionally, context support enables proper timeout handling,

ensuring robust database communications.

3.2.3 Performance Optimization

Go’s compilation to native machine code and efficient garbage collection system provides
several performance benefits, including fast startup times for containerized deployments,

low memory footprint for handling multiple connections, and efficient processing of binary

12

data for file operations. Each of these advantages contributes to the overall system

performance and scalability.

3.2.4 API Development with Gin

The Gin framework was chosen for its high performance and feature-rich API develop-
ment capabilities. Gin provides extensive middleware support for authentication and
logging, alongside efficient route grouping and management functionalities. The frame-
work includes built-in support for request validation, ensuring data integrity across API
endpoints. Additionally, Gin’s efficient HTTP response handling capabilities enable ro-
bust API operations. These features combine to create a powerful toolkit for developing
and maintaining high-performance web applications in Go. The implementation lever-
ages these capabilities through comprehensive middleware support for authentication and
logging, streamlined route grouping and management, integrated request validation sup-
port, and efficient HTTP response handling mechanisms, all working in concert to deliver
a robust and performant API system.

The combination of Go’s robust standard library, excellent performance characteris-
tics, and the Gin framework’s capabilities provides a solid foundation for our backend
implementation. This setup ensures efficient handling of concurrent operations, reliable
database interactions, and scalable API endpoints, all while maintaining code clarity and

type safety.

4 Introduction to Next.js

Next.js is a powerful React framework that enables server-rendered React applications
with ease. It provides a hybrid approach, combining server-side rendering (SSR), client-
side rendering (CSR), and static site generation (SSG) capabilities. This section discusses

Next.js and its role in our project’s architecture.

13

4.1 Why Next.js?

Our project requires a dynamic, responsive frontend that can efficiently handle routing
and rendering of components, while also integrating seamlessly with a robust backend
system. Next.js offers several advantages that align perfectly with our project’s specific
needs:

Next.js provides comprehensive functionality through several key features that en-
hance the development and performance of web applications. The framework offers
built-in support for Server-Side Rendering (SSR) and Static Site Generation (SSG), en-
abling pre-rendering of pages either on-demand or at build time, which ensures fast load
times and enhanced SEO for content-heavy pages such as user profiles and facial recog-
nition documentation. The creation of API endpoints within the same project under
the pages/api directory facilitates seamless integration between frontend and backend,
enabling efficient handling of authentication, facial data processing, and server-side logic
without requiring a separate backend server. Through automatic code splitting by page,
Next.js optimizes bundle size and improves load times, while also providing out-of-the-
box optimization for images and assets, crucial for handling user-uploaded images in
facial recognition systems. Built on top of React and compatible with Tailwind CSS,
Next.js leverages React’s component-based architecture to develop responsive and aes-
thetically pleasing user interfaces consistently across applications. Incremental Static
Regeneration (ISR) enables updates to static pages post-initial build without requiring
full rebuilds, maintaining current dynamic content while preserving performance bene-
fits. The framework’s optimization for performance and scalability efficiently manages
server resources and swift content delivery, essential for handling growing user bases
and increasing facial recognition data volumes. Next.js enhances developer productivity
through features like hot module replacement, automatic routing, and comprehensive er-
ror handling, facilitating rapid iteration and deployment of new features. Deployment
capabilities through platforms like Vercel provide serverless deployment, automatic scal-
ing, and global CDN access, ensuring high availability and performance across regions for

real-time facial recognition services. Security features include built-in HTTPS support,

14

protection against common vulnerabilities, and seamless integration with authentication
providers like OAuth2, ensuring secure handling of sensitive facial data. The exten-
sive Next.js community and ecosystem, supported by comprehensive documentation and
diverse plugins, provides valuable resources for developing complex facial recognition fea-
tures and addressing development challenges.

By leveraging these features, Next.js provides a comprehensive solution that meets our
project’s requirements for performance, scalability, security, and developer productivity.
Its seamless integration with our technology stack, including React and Tailwind CSS,
enables us to build a robust and user-friendly application that effectively handles facial
recognition functionalities.

Therefore, Next.js was the optimal choice for our project, enabling us to deliver a high-
performance, scalable, and secure application that meets both user needs and technical

specifications.

4.2 Server-Side Rendering Benefits

In traditional React applications, rendering happens entirely on the client side. While
this approach offers a rich user experience, it can have drawbacks in terms of initial load
time and SEO. Next.js addresses these issues through SSR. The server-side rendering
approach enables users to receive a fully rendered page on the first load, significantly
reducing the time to first meaningful paint. Search engines can index server-rendered
pages more effectively, improving the application’s visibility. Furthermore, users with
slower devices or connections benefit from reduced JavaScript processing on the client
side.

Next.js simplifies routing with its file-system-based router. Each page is a React
component stored in the pages directory, and the framework automatically handles the
routing based on the file structure. The system supports dynamic routing through the
use of brackets in filenames (e.g., [id].js), allowing for parameterized routes. Additionally,
Next.js allows the creation of API endpoints within the same project under the pages/api

directory, enabling a seamless integration between frontend and backend logic. This

15

integrated approach to routing and API management streamlines the development process

and maintains code organization.

4.3 Integration with React and Tailwind CSS

Our application leverages the powerful capabilities of React for building dynamic and
interactive user interfaces, complemented by Tailwind CSS’s utility-first approach for
efficient and scalable styling. Next.js serves as the foundational framework that seam-
lessly integrates both technologies, enhancing our development workflow and application

performance.

4.3.1 React Components

Next.js is inherently built on top of React, meaning that every page in a Next.js applica-
tion is essentially a React component. This foundational integration creates a powerful
development environment that leverages the best features of both frameworks. The ar-
chitecture treats pages as React components, enabling the breakdown of user interfaces
into reusable, manageable pieces. This modular approach promotes code reusability and
simplifies maintenance across the application.

State management becomes highly efficient through React’s state and lifecycle meth-
ods. Components can manage their own state and respond dynamically to user inter-
actions and data changes, significantly enhancing the responsiveness of the application.
The integration with React’s vast ecosystem allows for the incorporation of a wide range
of libraries and tools, such as React Router for client-side routing or Redux for complex
state management, thereby extending the application’s functionality.

Additionally, React components in Next.js benefit from server-side rendering sup-
port. This capability improves initial load times and SEO performance by delivering
pre-rendered HTML to the client, creating a more efficient and search-engine-friendly ap-
plication. The combination of these features establishes a robust foundation for building

sophisticated web applications.

16

4.3.2 Tailwind CSS

Tailwind CSS is a utility-first CSS framework that provides low-level utility classes,
enabling rapid Ul development without writing custom CSS. Integrating Tailwind CSS
with Next.js involves several key configurations and practices that enhance the develop-
ment process. The foundation begins with configuration through PostCSS plugins, which
requires creating a tailwind.config.js file. This configuration file serves as the central lo-
cation for customizing themes, extending default styles, and enabling additional features
such as dark mode support.

The framework’s utility-first approach represents a fundamental shift in styling method-
ology. By utilizing Tailwind’s predefined utility classes directly within JSX components,
elements can be styled quickly without writing extensive custom CSS. This methodology
promotes consistency across the application and significantly reduces the likelihood of
style conflicts that often arise in traditional CSS implementations.

Responsive design capabilities form another crucial aspect of Tailwind CSS integra-
tion. The framework provides comprehensive responsive utility classes that facilitate the
creation of interfaces adapting seamlessly to various screen sizes and devices. This feature
enhances the user experience across different platforms, ensuring consistent presentation
and functionality regardless of the viewing device.

Customization and extensibility features provide extensive control over the applica-
tion’s visual identity. Tailwind’s configuration system allows for detailed customization
of elements including colors, spacing, and typography. This flexibility ensures that the
application’s design aligns precisely with specific branding guidelines and design require-
ments while maintaining the efficiency of the utility-first approach.

Performance optimization represents a key advantage of Tailwind CSS in production
environments. During production builds, Tailwind implements a purging process that
removes unused CSS classes from the final bundle. This optimization significantly reduces
the CSS bundle size, resulting in faster load times and improved overall application
performance. The combination of these features creates a powerful and efficient styling

system that integrates seamlessly with Next.js applications.

17

4.4 Static Site Generation

Next.js provides robust support for Static Site Generation (SSG), a method of pre-
rendering pages at build time. SSG enhances performance and SEO, particularly for
content that does not change frequently. The benefits of static site generation span
multiple crucial aspects of web application development and deployment.

Performance optimization stands as a primary advantage of SSG implementation.
Pre-rendered static pages are served as plain HTML files, which load significantly faster
compared to dynamically rendered pages. This speed improvement leads to a better user
experience and higher engagement rates, as users encounter minimal delay when accessing
content.

The SEO benefits of static site generation provide another compelling advantage.
Search engines can efficiently crawl and index pre-rendered HTML content, substantially
improving the application’s visibility and ranking in search results. This enhanced in-
dexability ensures that content reaches a wider audience through improved search engine
performance.

Scalability and security considerations round out the benefits of static site generation.
Serving static files significantly reduces server load, making the application more scalable
and capable of handling high traffic volumes without requiring substantial infrastructure
investments. From a security perspective, static sites present a smaller attack surface
compared to dynamic sites, as fewer server-side processes are involved. This reduced
complexity enhances the overall security posture of the application while maintaining

robust performance characteristics.

4.4.1 Hybrid Rendering Approach

Next.js supports a hybrid rendering model, allowing developers to choose between Server-
Side Rendering (SSR), Static Site Generation (SSG), or Client-Side Rendering (CSR)
on a per-page basis. This flexible approach ensures that each page utilizes the most
appropriate rendering method based on specific requirements. Server-Side Rendering

proves ideal for pages requiring dynamic data fetching on each request, ensuring the

18

latest data is always displayed to the user - particularly valuable for user-specific content,
dashboards, or frequently changing pages. Static Site Generation excels for pages with
relatively static content, pre-rendering pages at build time to achieve faster load times and
improved SEO performance. Meanwhile, Client-Side Rendering serves highly interactive
pages effectively, where content loads dynamically based on user interactions, enhancing
application responsiveness by delegating rendering tasks to the client. This comprehensive
rendering strategy enables optimal performance across different types of content and user
interactions.

By adopting a hybrid approach, this can optimize each page for performance, scala-

bility, and user experience based on its unique needs.

4.4.2 Incremental Static Regeneration (ISR)

Incremental Static Regeneration (ISR) is an advanced feature of Next.js that allows for
the regeneration of static pages after the initial build, without requiring a full rebuild
of the entire site. ISR combines the benefits of static and dynamic rendering, providing
both performance and up-to-date content. This innovative approach transforms how
static content can be managed in modern web applications.

The on-demand page update capability represents a significant advancement in con-
tent management. ISR enables specific pages to be regenerated in the background when
new data becomes available. This ensures that users always receive the latest content
without experiencing downtime or delays, maintaining a continuous and reliable ser-
vice. The selective regeneration feature provides precise control over content updates,
as developers can define revalidation intervals for individual pages. This granular con-
trol optimizes resource usage and ensures that critical pages remain current while less
dynamic content updates less frequently.

Scalability and efficiency form the cornerstone of ISR’s benefits for large-scale appli-
cations. The system maintains the performance advantages of static pages while enabling
dynamic content updates as needed. This balance ensures that applications remain both

fast and responsive to data changes, providing an optimal solution for growing platforms.

19

The user experience remains seamless throughout the process, as regeneration occurs
entirely in the background. Users continue to access existing static pages without inter-
ruption, and once new content is generated, subsequent requests automatically serve the
updated versions, creating a smooth transition between content updates.

Implementing ISR in our Next.js application enhances our ability to deliver dynamic
content with the performance advantages of static site generation. This approach en-
sures that our application remains fast, scalable, and capable of providing up-to-date

information to users.

4.5 Deployment and Scalability

Next.js applications can be easily deployed to platforms like Vercel, which offers serverless
deployment, automatic scaling, and a global content delivery network (CDN). However,
for this project, integration with a custom Go-based backend infrastructure was chosen
to better align with specific backend requirements. The deployment architecture lever-
ages API routes as serverless functions, enabling automatic scaling based on demand.
Additionally, static assets and pages are served via CDN, improving load times for users
worldwide. This deployment strategy ensures that while Next.js handles the frontend
efficiently, the Go backend manages the complex facial recognition processes and data
management tasks, providing a balanced and high-performance application architecture.
The combination of serverless functionality and CDN integration creates a robust sys-
tem capable of handling varying workloads while maintaining optimal performance across

global regions.

5 Integrating Facial Recognition with the Frontend

The frontend integration of facial recognition capabilities represents a critical component
of our application’s security infrastructure, serving as the primary interface between users
and our advanced facial recognition system. This integration encompasses a sophisticated

combination of real-time video processing, secure data handling, and user interface de-

20

sign. The system is designed to provide seamless facial recognition capabilities while
maintaining strict security protocols and ensuring an intuitive user experience. Our im-
plementation addresses several critical challenges inherent in facial recognition systems,
including real-time video processing, secure data transmission, and user privacy concerns.
The solution balances the need for high-quality image capture, essential for accurate facial
recognition, with the requirements for efficient data processing and transmission. This
balance is achieved through a carefully orchestrated system of components working in

concert to deliver a robust and secure facial recognition experience.

5.1 Technical Architecture Overview

Our frontend facial recognition system is built on a modern technical foundation, metic-
ulously designed to optimize both performance and security. This architecture represents
a seamless integration of cutting-edge web technologies, each selected for its specific
strengths and contributions to the overall system functionality.

At the core of the system lies React 18.x paired with Next.js, a framework chosen for its
exceptional server-side rendering capabilities. This combination ensures faster initial page
loads, critical for enhancing user experience and improving search engine optimization
(SEO). Next.js provides a robust environment for managing complex application states,
making it ideal for the intricate processes involved in facial recognition. The framework
not only accelerates dynamic content delivery but also lays the groundwork for scalable
and efficient frontend development.

TypeScript serves as the backbone of the development process, offering a sophisticated
type system that significantly improves code reliability and maintainability. By enabling
early error detection, TypeScript reduces the risk of runtime issues, ensuring the stability
of critical facial recognition workflows. The use of advanced features like generics and
union types further strengthens the codebase, enhancing its adaptability and robustness.
This emphasis on type safety is essential for maintaining data integrity, a cornerstone of
any reliable facial recognition system.

A key component of the system is the integration of the WebRTC API, which provides

21

real-time video streaming capabilities. This functionality is vital for facial recognition,
enabling smooth and efficient capture of live video input. Beyond basic streaming, the
implementation incorporates advanced handling of media constraints, stream quality op-
timization, and failover mechanisms. These features ensure consistent performance, even
under varying network conditions and across diverse device environments.

Another pivotal technology in the system is the Canvas API, which facilitates sophis-
ticated image processing within the video pipeline. Video frames are manipulated with
techniques like frame buffering and quality optimization to provide the best possible input
for facial recognition algorithms. The processing pipeline has been fine-tuned for both
efficiency and accuracy, balancing memory management with the need for high-quality
image data.

To maintain consistent state management across the application, the system leverages
the Context API. This centralized solution ensures smooth handling of complex state
transitions, covering everything from user authentication to the real-time status of video
processing. By enabling efficient updates and rapid responses to user interactions, the
Context API contributes to the overall responsiveness and reliability of the application.

Together, these technologies form a cohesive and powerful framework for the frontend
facial recognition system, balancing innovation with practicality to deliver a seamless and

secure user experience.

5.2 Component Architecture

The facial recognition system implements a sophisticated hierarchical component struc-
ture that prioritizes modularity, maintainability, and efficient state management. This
architecture reflects modern best practices in frontend development while addressing the
unique challenges of facial recognition implementation. The system’s component hierar-
chy is carefully designed to optimize both performance and code maintainability, ensur-
ing that each component handles a specific aspect of the facial recognition process while

maintaining clear communication channels with other system components.

22

5.2.1 Primary Components

The image capture process in our facial recognition system integrates a range of sophisti-
cated technical elements to ensure both performance and accuracy. A key feature of the
implementation is precise timing control, which governs the moment of frame capture to
optimize the quality and relevance of the acquired image. This ensures that the system
consistently captures frames at the ideal point for subsequent processing.

To maintain consistency within the processing pipeline, the system adheres to stan-
dardized image dimensions of 640x480. This uniformity simplifies downstream processing
tasks, enabling efficient handling of the image data. In addition, orientation correction
algorithms play a critical role by addressing variations in camera positioning or user pre-
sentation. These algorithms automatically align the captured image, ensuring that faces
are consistently oriented for accurate recognition.

The system also employs advanced quality preservation techniques, balancing the
need for detailed facial features with efficient data transmission. By utilizing carefully
calibrated compression methods, the system minimizes data size without compromising
critical facial details required for recognition. This balance ensures that the images are
both manageable and effective for processing.

Reliability is further enhanced by comprehensive error handling mechanisms, which
monitor the capture process for any failures. When a capture attempt fails, the system
responds with appropriate feedback, allowing for quick remediation and ensuring the
overall stability of the capture process. These mechanisms contribute to a seamless user
experience and maintain the robustness of the system.

Together, these elements form a highly reliable and efficient image capture system. By
addressing timing, standardization, alignment, quality preservation, and error handling,
the system establishes a solid foundation for the facial recognition process, ensuring

accuracy and dependability at every stage.

23

5.2.2 Image Capture System

The image capture process involves several sophisticated steps to ensure optimal quality
for facial recognition. Precise timing control mechanisms govern frame capture, while
image dimension standardization at 640x480 maintains consistent processing parameters.
The system implements orientation correction for proper face alignment, alongside qual-
ity preservation through careful compression techniques. Comprehensive error handling
manages and responds to any failed capture attempts, ensuring system reliability.

The application implements a comprehensive authentication and state management
system using React’s Context API. This sophisticated system oversees multiple critical
aspects of application state, including user session state and authentication status mon-
itoring. The system maintains facial recognition completion status tracking, manages
various loading states and error conditions, and implements automatic session refresh
mechanisms. Additionally, the system provides robust user profile data management
capabilities, ensuring secure and efficient handling of user information throughout the

authentication process.

5.2.3 Enhanced Authentication Flow

The enhanced authentication flow employs a sophisticated dual-layer system that in-
tegrates OAuth-based authentication with facial recognition technology. This compre-
hensive approach ensures that access to sensitive areas, such as the user dashboard, is
granted only to verified individuals who have successfully authenticated their credentials
and completed a facial scan. The combination of OAuth and facial recognition creates a
robust security framework that significantly reduces unauthorized access risks.

The rationale behind implementing dual-layer authentication stems from the comple-
mentary nature of these security measures. While OAuth provides a secure mechanism for
verifying user credentials and managing access tokens, the integration of facial recognition
adds a crucial biometric verification layer. This approach ensures the authenticated in-
dividual is the legitimate user, mitigating risks such as credential theft and unauthorized

access through compromised accounts. The system effectively combines the ”something

24

Figure 2: Dashboard When Users Are Authenticated

you know” aspect through credentials with the ”something you are” factor through facial

recognition, aligning with multi-factor authentication best practices.

Camera Feed

Welcome, Jacob!

Figure 3: Page Where Users Are Scanned In or Redirected When A Face Scan Is Un-
sucessful

The authentication mechanism operates through a sophisticated redirection process
managed by the AuthContext, which evaluates the faceScannedStatus flag associated with
user profiles. Upon successful OAuth authentication, users with a false faceScannedSta-
tus are automatically redirected to the FaceScreenshot component for facial recognition
completion. This redirection process is designed to be seamless, guiding users through
the authentication process without requiring manual intervention.

Security enhancements provided by the dual-layer authentication system span multi-
ple aspects of data protection. The implementation ensures high accuracy in user iden-

tification through biometric verification, while adding defense-in-depth through multiple

25

security layers. The system maintains regulatory compliance with data protection stan-
dards like GDPR and CCPA, implements comprehensive authentication activity logging
for enhanced accountability, and significantly reduces fraud risk through robust verifica-
tion procedures.

User experience remains paramount in the system design, with smooth transitions
between OAuth authentication and facial recognition processes. Clear instructions guide
users through each step, while performance optimizations minimize delays. The sys-
tem includes fallback mechanisms for cases where facial recognition may not be feasible,

ensuring accessibility for all users regardless of their technical circumstances.

Storage Distribution by File Type

Figure 4: Piechart is shown with users data along with how much storage is used (storage
can be changed and is not limited)

The implementation architecture centers around key components that work in con-
cert to deliver secure authentication. The AuthContext centralizes authentication and
facial recognition states, while the FaceScreenshot Component handles real-time video
capture and image processing. Protected routes are secured through the ProtectedRoute
Component, and backend services manage facial recognition processing, data encryption,
and secure storage of biometric information.

Security protocols and data privacy measures incorporate robust encryption methods
for biometric data protection. The system utilizes AES-128 encryption with PBKDF2-
derived keys and unique salts for each user. All data transmissions occur over HTTPS,
with strict access controls limiting sensitive information access to authorized services

only. Biometric data storage follows encrypted database protocols with tightly controlled

26

access mechanisms.

Ongoing maintenance and future enhancements ensure the system remains at the fore-
front of security technology. Regular security audits, algorithm improvements, and user
feedback integration maintain system robustness. Future developments may include addi-
tional biometric authentication methods and machine learning advancements to enhance
recognition accuracy across diverse user demographics.

The testing and quality assurance framework encompasses multiple layers of verifi-
cation. Unit testing validates individual components through Jest and React Testing
Library, while integration testing using Cypress ensures seamless component commu-
nication. System testing validates end-to-end user journeys, security testing identifies
vulnerabilities, and user acceptance testing gathers valuable feedback for continuous im-
provement. Regression testing through automated test suites maintains system integrity
during updates.

This comprehensive implementation of dual-layer authentication demonstrates a com-
mitment to security excellence while maintaining user accessibility. The system estab-
lishes a robust security framework that enhances user verification, mitigates credential-
based threats, and aligns with industry best practices and regulatory standards, ulti-
mately safeguarding sensitive user data while reinforcing application integrity and trust-

worthiness.

5.3 Docker Compose

Docker Compose is a tool that enables developers to define and manage multi-container
Docker applications. In our implementation, The service utilizes Docker Compose to or-
chestrate several interconnected services that form our complete application stack. The
compose configuration demonstrates the practical application of containerization in solv-
ing the it works on my machine” problem by ensuring consistent deployment across

different environments.

27

5.3.1 Frontend Service Configuration

The front-end service configuration implements a sophisticated architecture designed to
handle the web interface components of the application. This service builds from a local
Website directory, establishing a foundation for the user interface and interactive elements
of the system.

The configuration exposes port 8008 for web access, enabling seamless communication
between clients and the application interface. This port mapping ensures proper routing
of web traffic and maintains consistent accessibility for users accessing the system through
standard web protocols.

Volume mapping for live development represents a critical aspect of the configuration.
This feature establishes a direct connection between the local development environment
and the containerized application, enabling real-time updates and modifications to be
reflected immediately in the running service. The mapping relationship between the
Website directory and the frontend container facilitates efficient development workflows

and rapid iteration of interface components.

5.3.2 Backend Service Architecture

The backend service, implemented in Go, functions as the primary application server,
orchestrating core functionality and data management operations. The service architec-
ture employs sophisticated connection management to maintain robust interactions with
essential data storage systems.

The implementation establishes and maintains critical connections to two fundamental
services: a PostgreSQL database for structured data management and MinIO object
storage for efficient handling of unstructured data. These connections form the backbone
of the application’s data architecture, enabling comprehensive data handling capabilities.

The environment configuration defines essential connection parameters, including
database credentials and endpoint specifications. Through carefully structured environ-
ment variables, the system maintains secure connections to the PostgreSQL database

while simultaneously managing object storage access through the MinlO endpoint. This

28

dual-storage approach provides flexible and efficient data management capabilities across

different types of application data.

5.3.3 Database and Storage Services

The application’s data management infrastructure is built upon two fundamental storage
services, each serving distinct but complementary roles in the system architecture. These
services form the foundation of the application’s data handling capabilities.

The PostgreSQL database instance serves as the primary repository for structured
data management. This sophisticated database system handles complex data relation-
ships and transactions, ensuring data integrity and consistent access patterns across the
application. The PostgreSQL implementation utilizes environment-based configuration
management to maintain secure and flexible database access.

The database configuration employs environment variables to manage essential pa-
rameters, including database name, user credentials, and access permissions. This ap-
proach to configuration management ensures secure handling of sensitive database cre-
dentials while maintaining flexibility for different deployment environments. Through
this structured approach to data storage, the system maintains robust data management
capabilities while ensuring security and scalability.

MinlO serves as the dedicated object storage solution within the application infras-
tructure, specifically designed to handle unstructured data with high efficiency and scala-
bility. This component provides essential capabilities for storing and managing large-scale
binary objects, media files, and other unstructured content that traditional databases
cannot efficiently process.

The MinlO implementation utilizes a containerized approach through the official
MinlO image, ensuring consistency and reliability across different deployment environ-
ments. The service configuration includes essential environment variables for authentica-
tion and access control, establishing secure root-level access credentials for administrative
operations.

The system exposes dual ports for comprehensive service accessibility, with port 9000

29

serving as the primary API endpoint for object storage operations and port 9001 pro-
viding access to the MinlO Console interface. This dual-port configuration enables both
programmatic access for application operations and administrative management through

the web-based console, creating a flexible and maintainable object storage infrastructure.

5.3.4 Specialized Processing Service

The application architecture includes a specialized Python-based service dedicated to fa-
cial recognition processing. This component forms a crucial part of the system’s biometric
authentication capabilities, handling sophisticated image analysis and facial feature ex-
traction.

The service implementation utilizes a custom-built Python server image, specifically
designed to manage facial recognition tasks. The build context references a dedicated
directory containing the specialized facial recognition codebase, ensuring all necessary
dependencies and algorithms are properly packaged within the container.

The service exposes port 4269 for communication with other system components, es-
tablishing a dedicated channel for facial recognition requests and responses. This port
configuration enables seamless integration between the facial recognition service and other
application components, facilitating real-time image processing and authentication work-

flows through a well-defined API interface.

5.3.5 Networking and Persistence

The Docker Compose configuration establishes a custom network (app-network) that
enables seamless communication between services. Persistent storage is managed through
named volumes for both the PostgreSQL database and MinlO storage.

This comprehensive containerization setup demonstrates the power of Docker in cre-
ating isolated, reproducible environments. When developers execute docker-compose
up, the entire application stack initializes with correct configurations and inter-service
connections, effectively eliminating environment-related development issues. The com-

pose file serves as both documentation and configuration, ensuring consistent deployment

30

across development, testing, and production environments.

The service dependencies are managed through the depends_on directive, ensuring
proper startup order and service availability. This orchestrated approach to container
management exemplifies modern development practices where complex applications are
broken down into manageable, interconnected services that can be developed, tested, and

deployed independently while maintaining system cohesion.

6 User Authentication

User authentication was implemented in the backend using Gothic, a library that
facilitates the use of OAuth2 with Golang, specifically using Google OAuth2. Utilizing
OAuth2 instead of developing our own minimizes the risk of security errors in user au-
thentication. This approach associates users’ information and login with their Google

email, ensuring that login information remains secure and trustworthy.

7 Session Management Techniques

In web applications, session management is a critical component for maintaining stateful
interactions between the server and clients. In our application, sessions are used to
authenticate users and persist user-specific data across multiple requests. This section
describes how sessions are managed, stored, and secured within our application to ensure

a seamless and secure user experience.

7.1 Session Implementation

Our backend is built using Golang, and utilizes the Gorilla web toolkit, specifically the
gorilla/sessions package, to handle session management. Upon successful authentica-
tion via Google OAuth2, a session is initiated and a session cookie is created and sent to
the client. This cookie contains a session identifier that the server uses to retrieve session

data on subsequent requests.

31

7.2 Session Storage

Sessions are stored server-side using secure, encrypted cookies. The gorilla/sessions
package allows us to store session data in cookies that are signed and encrypted to prevent
tampering and eavesdropping. The session cookie includes a session ID and may contain
minimal user information necessary for session validation. All sensitive information is

kept server-side to enhance security.

7.3 Session Security

Session security implementation encompasses multiple sophisticated protection measures,
each addressing specific vulnerability concerns. The foundation of this security framework
begins with robust cookie security flags that provide essential protection against common
attack vectors.

Cookie security is established through the implementation of HttpOnly and Secure
flags. The HttpOnly flag creates a crucial barrier preventing client-side scripts from
accessing the cookie, effectively mitigating the risk of cross-site scripting (XSS) attacks.
The Secure flag adds another layer of protection by ensuring cookie transmission occurs
exclusively over HT'TPS connections, preventing interception across unsecured networks.

Session expiration mechanisms form another critical security component. By imple-
menting strict expiration timeframes, the system limits session validity periods, signifi-
cantly reducing the window of opportunity for session hijacking attempts. This approach
requires users to re-authenticate after session expiration, effectively preventing long-term
unauthorized access to the system.

Session regeneration provides dynamic security through automatic session ID renewal
during critical events such as authentication or privilege escalation. This sophisticated
mechanism prevents session fixation attacks by invalidating any potentially compromised
session identifiers, making it impossible for attackers to hijack user sessions through
known session IDs.

The security framework is completed through comprehensive encryption and signing

measures. Session data stored in cookies undergoes both signing and encryption using

32

robust cryptographic algorithms provided by the gorilla/securecookie package. This dual-
layer protection ensures that session data remains impervious to unauthorized access or

modification, maintaining the integrity and confidentiality of user sessions.

7.4 Session Management Workflow

The session management workflow begins with user authentication through Google OAuth2.
During this initial phase, the server performs identity verification and retrieves essential
user information, including email addresses and user IDs. This authentication step es-
tablishes the foundation for secure user interactions within the system.

Following successful authentication, the system initiates session creation through the
sessions.NewCookieStore function. This process generates a new session containing criti-
cal user data, including email information and a unique session identifier. These elements
form the core of the session’s identity and authentication state.

Cookie assignment represents the next crucial step in the workflow. The system con-
figures the session cookie with appropriate security flags and transmits it to the client
through HTTP response headers. The client’s browser stores this cookie and automati-
cally includes it in all subsequent requests, maintaining session continuity.

Session retrieval occurs with each incoming request, as the server processes the session
cookie to access stored session data. During this phase, the session store performs critical
security checks, verifying cookie integrity and decrypting session data to ensure secure
access to user information.

The validation phase involves comprehensive session verification. The server evaluates
session validity and expiration status while confirming that the associated user maintains
necessary permissions for accessing requested resources. This multi-faceted validation
ensures continuous security throughout the session lifecycle.

Session termination marks the final phase of the workflow, triggered when a user
initiates logout. The system responds by invalidating the active session, removing session
data from server storage, and eliminating the session cookie from the client’s browser.

This comprehensive cleanup ensures proper session closure and prevents unauthorized

33

access attempts.

7.5 Protecting Against Common Attacks

The application implements robust protection against Cross-Site Request Forgery (CSRF)
attacks through sophisticated token validation mechanisms. Each state-changing request
undergoes verification using anti-CSRF tokens, ensuring that malicious actors cannot
forge unauthorized requests on behalf of authenticated users.

Cross-Site Scripting (XSS) protection is achieved through multiple security layers.
The HttpOnly flag on cookies creates a barrier preventing client-side script access to sen-
sitive data, while comprehensive input sanitization eliminates potential injection points
for malicious scripts. These combined measures effectively mitigate the risk of XSS at-
tacks that could otherwise compromise valuable session data.

Session hijacking prevention relies on a multi-faceted security approach. The system
employs encrypted and signed session cookies to protect session integrity, while enforcing
secure transmission exclusively over HT'TPS connections. This comprehensive security
strategy significantly reduces the risk of unauthorized session capture and exploitation,

maintaining secure user sessions throughout their lifecycle.

7.6 Session Scalability

In a distributed environment, session management can become complex. While our appli-
cation currently uses cookie-based sessions suitable for a single-server setup, it is designed
to scale. For horizontal scaling, it can switch to a shared session store like Redis or Mem-

cached, ensuring that sessions are accessible across multiple server instances.

8 Facial Detection and Analysis/Recognition

The development of facial detection began by incorporating specialized Python li-
braries, including face_recognition, alongside NumPy and SciPy for advanced com-

parison metrics. The system focuses on extracting and analyzing facial features through

34

multiple comparison methods, creating a robust authentication system. Our implemen-
tation utilizes three distinct comparison methods working in concert to ensure accurate
facial recognition.

Once the facial detection process locates a face within an image and generates a de-
tailed facial mesh of over 450 key landmarks using MediaPipe and OpenCV, the next step
involves a precise analysis of these points to ensure accurate recognition and comparison.
This is achieved through the calculation of three critical metrics: Euclidean distance,
Pearson Correlation Coefficient (PCC), and Cosine Similarity. Euclidean distance mea-
sures the straight-line distance between corresponding points on two facial encodings,
providing a quantitative assessment of how closely two faces resemble each other in terms
of spatial geometry. PCC evaluates the linear correlation between the encoding vectors,
offering insights into the degree to which the points are statistically related, with a value
closer to 1 indicating a stronger match. Lastly, Cosine Similarity assesses the angular
similarity between the encoding vectors, irrespective of magnitude, focusing purely on the
directional alignment of the data. Together, these metrics provide a robust framework
for face comparison by combining spatial accuracy, statistical correlation, and vector
orientation into a weighted score that determines the likelihood of a match. Once the
facial encodings are confirmed as accurate, the numerical data derived from these encod-
ings, represented as floating-point coordinates, is prepared for the data extraction phase.
These values serve as the foundation for generating encryption keys in the subsequent
step, ensuring a secure and user-specific mechanism for protecting sensitive data.

The primary comparison method is Euclidean
distance calculation, contributing 30% to the final weighted score. This method measures
the spatial differences between facial encodings, providing a fundamental geometric com-
parison of facial features. The second method employs the Pearson Correlation Coefficient
(PCC), weighted at 40% of the final score, which measures the statistical relationships
between facial encodings. Finally, Cosine Similarity analysis, weighted at 30%, evalu-
ates vector space similarities between facial features. This multi-metric approach ensures

robust face matching by considering different mathematical aspects of facial feature com-

35

Figure 5: Facial Mesh Generated by MediaPipe and OpenCV

parison, which allows for more accurate results from the facial data that is sent from the
user.

As development of this process was taking
place, several rounds of testing were done to ensure that false positives and false negatives
did not occur. This process of testing and refinement carried on for four months until a
final round of testing solidified no more false flags. Testing during the development was
done with the permission of all participants, and all data that was used for comparisons
was securely disposed of in front of the subjects. All of the aforementioned methods
used above were implemented in waves to assure that if one was causing issues, it can be

individually adjusted for better accuracy.

9 Data Security Implementation

Our system implements a comprehensive security approach centered around the UserEn-
cryption class, which manages both key derivation and data encryption/decryption pro-
cesses. The security implementation begins with the immediate encryption of each user’s
facial feature vector, utilizing a sophisticated multi-layered approach to data protection.

The encryption process starts by deriving a unique key for each user, combining their

OAuth ID with a cryptographically secure random salt value. This process employs

36

the PBKDF2 (Password-Based Key Derivation Function 2) algorithm, configured with
100,000 iterations to produce a 16-byte key suitable for AES-128 encryption. The salt
generation process creates a unique cryptographic value for each user, ensuring that
identical facial data from different users produces distinct encrypted outputs. The derived
AES-128 key is then used to securely encrypt the user’s facial data, providing a robust

and user-specific mechanism for protecting sensitive information.

10 Database Operations

The system employs PostgreSQL with a secure psycopg2 interface for database op-
erations, with all connection parameters managed through environment variables for en-
hanced security. The database implementation includes a comprehensive suite of func-
tions for handling facial authentication data. These operations encompass the initial
storage of facial data with encryption, secure retrieval of stored facial data, validation
of existing user records, maintenance of authentication status, and management of data
updates with encryption.

All database operations are implemented with proper error handling and connection
management, ensuring robust and secure data handling throughout the authentication
process. The system maintains separate functions for different database operations, al-
lowing for modular and maintainable code while ensuring security at each step of the

data handling process.

11 Awuthentication Pipeline

The authentication pipeline processes face data asynchronously through web end-
points, implementing comprehensive security measures throughout the process. The sys-
tem begins with image processing, where incoming facial images undergo conversion and
normalization before feature extraction. The extracted facial features are then processed
through the face recognition system, which applies the weighted comparison metrics to

determine authenticity.

37

The pipeline incorporates multiple security layers, including encryption of all facial
features before storage, secure key derivation with PBKDF2, and unique salt values for
each user. The system maintains security through proper session management and secure
database connections, ensuring that facial feature vectors are never stored in their raw
form.

The integration of these components creates a secure multi-factor authentication sys-
tem that requires both successful facial recognition and valid OAuth credentials. This
dual-factor approach, combined with our encryption methodology, ensures that all sen-
sitive data remains protected throughout the entire process. The system includes com-
prehensive error handling for various scenarios, including database connection failures,
image processing errors, encryption/decryption failures, face detection issues, and au-

thentication failures.

11.1 Authentication Pipeline Functions

The Authentication pipeline includes many different functions for processing the users
facial data and with encrypting said facial data for maximum security in protecting a very
sensitive data type, which is the user’s face. First is faceData (), which is the route that
processes the user’s facial data when they are logging into the service. If it’s their first
time, it creates the face data from the picture sent, and then uses the encryption key
created by the UserEncryption class, which gets a user OAuth2 ID sent from Google.
This encryption key is created with a randomly generated salt, and both the encrypted
facial data and the random salt are encoded and then inserted into the database. For
already existing users, it retrieves the encoded face data and salt value, uses the OAuth2
ID sent from Google to generate the encryption key, then decrypts the face data and
compares the new face data with the existing data. If they pass the comparison test,
access to their files is granted, and the new face data is encrypted with a new randomly
generated salt. The new encoded encrypted face data with the salt is then updated in

the database.

38

12 Conclusion

This project has successfully developed and implemented a sophisticated facial recognition-
based authentication system that effectively balances security, performance, and user
experience. By integrating cutting-edge technologies and implementing robust security
measures, the team has created a system that addresses the growing need for secure and
convenient authentication methods in modern web applications.

Key achievements of the implementation include a multi-layer security architecture
that integrates OAuth2 with facial recognition, creating a robust dual-factor authentica-
tion system. The advanced facial recognition system utilizes multiple comparison met-
rics, ensuring high accuracy and reliability in user verification. Robust data protection
is achieved through industry-standard encryption techniques and secure key derivation,
guaranteeing the protection of sensitive biometric data.

The scalable architecture, combining Go backend services with Next.js frontend and
containerized using Docker, enables the system to maintain high performance while han-
dling complex authentication processes. Optimized performance is achieved through
caching strategies, efficient database operations, and optimized image processing.

The project demonstrates innovative approaches to common challenges in biometric
authentication systems. Privacy preservation is ensured through sophisticated encryption
mechanisms, while the careful attention to the authentication flow and user interface
design results in a seamless and intuitive user experience. Comprehensive error handling
and fallback mechanisms ensure system stability and reliability across various operating
conditions.

Looking ahead, this implementation provides a solid foundation for future enhance-
ments and extensions. Potential areas for future development include the integration
of additional biometric authentication methods, enhancement of facial recognition algo-
rithms through machine learning, extension of the system to support broader authentica-
tion scenarios, implementation of advanced analytics for system performance monitoring,
and the development of additional security features and compliance measures.

In conclusion, this project represents a significant advancement in secure authenti-

39

cation systems, successfully combining modern web technologies with sophisticated bio-
metric verification methods. The implementation not only meets its initial objectives but
also establishes a framework that can be extended and enhanced to meet future authenti-
cation challenges and requirements. Through careful attention to security, performance,
and user experience, the team has created a system that effectively addresses the growing

need for secure and convenient authentication in modern web applications.

40

