
Final Presentation Transcript

Slide 1: Group Intro

NOAH – Hello Everyone! Welcome to our Senior Project Final Presentation! Our Group

created a Fire Detection System and the members of the group include Saul, Jeric,

Chris and myself (Noah).

Slide 2: Introduction

The main drive of this project started back in the early months of the Fall 2020 semester

with the emergence of the devasting wildfires throughout the world, especially in

California and Australia. In response to the millions of acres burned in 2020, our group

decided to be proactive and create a fire detection system. The main issue is a lack of

early fire detection for the homeowners living in remote areas or have large open land.

The goal was to create a consumer accessible product that could be implemented on

these homeowners' property. The main components of this project include a camera on

a rotating servo that transmits video to the object detection software, along with sensors

that detect low soil moisture, and a buzzer to alert the homeowner. This was completed

by taking advantage of many open-source programs such as LabelImg, Darknet,

Python, Raspberry Pi, and Arduino to achieve these results.

Slide 3: Market Research

Now getting into the Market Research. The main objectives of this project are increasing

safety and insuring conservation of the environment, however, that does not mean we

are immune to environmental, ethical, political, and social constraints. Due to the

technology being included. Some potential ethical/political constraints that could cause

an issue include the use of a camera with object detection due to the ongoing debate

about privacy. However, the intended location of this system would be on private

property with the owner's permission. False alarms can be a potential social issue, so

we want to ensure detection accuracy reaches a certain threshold before alerting the

user of a fire. Now Chris will go over the project plan.

Slide 4: Project Plan

CHRIS – Hello I’m Chris Gripkey, an Electrical Engineering student working on this

project. I oversaw image annotation, methodology and troubleshooting. Here is our

original project plan. We designed this project to have to data inputs, pictured as green

orthogons, to feed camera and humidity data to the microprocessor. After running the

visual data through an implementation of YOLOv4 Tiny. The resulting probability, if

above the threshold, would trigger an alarm. If not, the humidity data would be accessed

and trigger a simple warning if enabled and loop back to repeat the process.

Slide 5: LabelIMG Fire

When classifying images for the convolutional neural network (or CNN for short) we

chose to minimize the number of classifications to three things: fire, smoke and nofire.

The reason for this was to include fire-like adversarial images as nofire classifications to

delineate fire from other sources that typically could be classified as potential fire

sources. We also included smoke as an indicative classifier to reinforcement of fire

confidence.

Slide 6: LabelIMG Other Labels

Here you can see some examples of the annotation of the adversarial images to better

train the CNN. Due to hue prominence and saturation. a primarily red room and extreme

contrast light sources were needed such as those pictured. In total we annotated 565

images with about ~60% fire images and ~40% non-fire.

Slide 7: YOLOV4 Object Detection

To better understand our results, we looked at the confusion matrix and accuracy of the

model. Unfortunately, due to the need of using a faster, more lightweight CNN for

evaluating the camera input, the overall average precision of the trained CNN we chose

to use was only 86%. This rating is too low for real world applications, where a one in a

million false positive rate is expected for utilization. We will need to improve upon this

rate in future iterations. Jeric will explain the deployment next.

Slide 8: YOLOV4 Object Detection

JERIC - Hello, I'm Jeric, and my work on this project was focused on the training and

deployment of the neural network.

We had tried different levels of training as our dataset grew larger. From the chart that

you see here, this is a model that was run for a total of 10000 iterations compared to the

recommended 6000 iterations per 3 classes. As Chris mentioned, we decided to use a

model run for less iterations and with a lower resultant precision from training. The

problem with running with more iterations causes a higher chance of false positives due

to overtraining the most represented class in the image dataset. I was able to train

locally on my machine taking about 2 hours per model. This short video demonstrates

the model detects fire from a lighter when run from my desktop and webcam. (4 second

video)

Slide 9: Deployment of Neural Network

Despite using the tiny model, the Raspberry Pi is not capable in processing it. To work

around this, the model is converted and optimized to Tencent's ncnn framework. This

framework is designed for use in processing performance found in mobile phones.

The code that you see on these slides are derived from the official NCNN repository

examples. It is in C++ from an existing project by Q-Engineering in the Netherlands.

net.h is a header called from the ncnn library, and a few OpenCV libraries are added for

handling inputs. The modifications I made here are in the class names we will be

detecting with this model: fire, smoke, and nofire. The next functions declared, which

are not pictured, are the object detection and labelled box drawing functions.

Slide 10: Deployment of Neural Network

Here in the main function, the trained model that was converted from yolo to ncnn

format is loaded. Originally, this program was set to ask for an input JPG file, but I

modified it so that it will continuously capture frames from the default camera index until

the user hits Q from the camera window to exit the program.

Slide 11: Deployment of Neural Network

This video is a demonstration of that code in runtime. The camera is a standard

Raspicam that can take images up to 1080p, but when run as a video in this resolution,

the frames are processed much slower, and the camera signal becomes garbled and

discolored into a bluish color space that does not detect fires. On the other hand,

lowering the resolution causes decreased detection and accuracy, so running at 720p

was the only passable option for detection. You can see from the video that a fire,

represented by a NULL class, only appears for a couple of frames for the whole video.

As mentioned, the camera is mounted on a servo which Noah will now go over.

Slide 12: Servo

NOAH - Hi it’s Noah again. I am going to talk about the part I focused on which was the

servo and the camera mount. The wiring of the servo consisted of signal wire going to

pin 11 which is a GPIO pin necessary to send a PWM signal to the servo then we have

our ground going to pin 6 and 5V to pin 4. We went with a continuous rotation servo as

a regular micro servo would not be sufficient. We took the FOV of the Raspicam, which

was ~62 degrees, to determine that is necessary to have 6 different positions of the

camera to cover a full 360 degrees. As show in the diagram in the bottom right corner

we have 6 different camera stop positions 60 degrees apart. As I started researching

the programming of the servo, I realized that it did not have a potentiometer which is a

key component, to allow the servo to recognize its position. I had to work around this by

changing the duty cycle and using a protractor to get the approximate angle within 2-3

degrees of the exact degree. Here’s a short demo of how the servo works. (video)

Slide 13: Servo code

Let's briefly go through the important parts of the code. I set pin 11 as my output pin and

gave it a 50Hz which is the input frequency the servo requires. Then I started my first

while loop for the counterclockwise rotation for 6 stop positions. Finally, another while

loop to stop at 6 positions in the clockwise direction.

Slide 14: Resulting Camera View

Here is a quick demonstration of the camera view of the servo running for the first set of

rotations. (video) Saul will now go over the Wireless Sensor Network.

Slide 15: Wireless Sensor Network

SAUL – Hello my name is Saul and I primarily worked on the Wireless sensor Network.

Slide 16: OVERVIEW

So, a general overview of the system will consist of a “central” node where all other

sensor nodes will transmit to. As you can see once the data has been gathered by the

moisture sensor, it then proceeds to transmit the data to the central node. The central

node will then display the reading to the LCD screen and will check if it is above a

certain threshold. In this case 20%. If it falls below this set threshold then it will trigger

the alarm but can be silenced using a button.

Slide 17: Parts

In total, we used 7 components to construct this system, 5 for the central node, and 4

for the sensor node. The central node was constructed from the Arduino microcontroller,

transceiver, LCD Screen, Buzzer, and button. Moreover, the sensor unit was

constructed from similar components such as the Arduino Microcontroller and

transceiver but also included a battery and moisture sensor. The total cost for the

central node and one sensor node came to a total of about 100 dollars.

Slide 18: Central Node

The central nodes main features are the following. The Central module can be powered

by any plug-in outlet in your home in conjunction with a 5V AC adapter and a USB to

mini-B port. As previously mentioned, it displays moisture levels from surrounding

nodes and below a set threshold level triggers an alarm. In addition, a button to silence

the alarm. As you can see on the right-hand side you can see a view of the central

node.

Slide 19: Wiring

Here is the overall schematic for the central node and how all the different modules

were connected. An important connection to mention would be the Inter – Integrated

(I2C) PINS highlighted in red. This form of communication protocol enables us to use

the LCD with significantly less GPIO pins than a traditional LCD would have.

Slide 20: Sensor Node

The sensor nodes main feature is that it able to transmit up to 135m long. This was

done in a residential setting so the range could be higher in an open setting where there

are no obstructions such as other houses. As previously mentioned, it transmits every

6hrs and can run up to 11days. The battery can then be recharged using a micro-USB

cable.

As depicted in the image you can see an aerial view of what 135m looks like.

Particularly from the Walter stern library from the CSUB campus.

Slide 21: Wiring

Here is the overall schematic of how the pins were connected to the Arduino

microcontroller. An important connection to mention would be PINS D11 and D12 which

they are the assigned SPI pins on the microcontroller. SPI stands for Serial Peripheral

Interface—it’s a de facto synchronous communication bus standard, it boasts both

simple implementation and high-speed data transfer capability. Here we are using it to

transmit data to the transceiver so it can then be transmitted to the central node.

Slide 22: Antenna

The antenna was constructed using a strand of solid core wire. For the antenna to be

functional we created what is referred to as a quarter whip antenna. To determine the

length of the antenna calculations needed to be made. The length of the wire is equal

to ¼ of the wavelength. therefore, if we look at the equation for wavelength, we can

calculate it using the speed of light which is 3x10 m/s and the frequency being used for

transmission which 433MHz. Evaluating, this then gives us a result of 17.3 cm.

To the right you can see the antenna soldered on the transceiver breakout board.

Slide 23: Code

So, for our system, one library used was RadioHead which was created by Mike

McCauley. As you can see it provides a lot of functionality for setting up the transceiver

and implementing it to your will. The second library we used was LiquidCrystal_I2C

which was obtained through johnrickman on GitHub. This library needed to be used due

the LCD screen using I2C serial communication protocol but is very similar to the

Arduino LiquidCrystal library.

Slide 24: Continued

One aspect that really needed to be addressed with transmitting and receiving was

converting the moisture sensor reading from the sensor into a format that would be

transmitted successfully. Using this library, transmission occurs in packetized bits,

therefore we needed to break the sensor reading value into single character bits which

could then be transmitted and received correctly.

Slide 25: Demo

Now the Demo. Before we play video, I would like to provide some context on what you

will be seeing. So, the total distance between where the central unit and the node is

about 15m or so. Here in the video, I will be taking and transmitting the moisture level

every 3 seconds, but as mentioned before the final product will be taking moisture levels

every 6 hours. The threshold value will be set at 20% in accordance with the final

products threshold level. Starting the video, you will see the sensor embedded in very

dry soil, therefore the alarm will sound off. I will then proceed to continuously add water

to increase soil moisture levels. I will also be continuously pushing the button to turn off

the alarm after each reading until it exceeds the threshold value for the alarm.

Chris will now address the timeline of the project.

Slide 26: Original Timeline

CHRIS - Hello Chris Gripkey here. This is the original timeline for our project. We did

complete all but one task on the timeline, however the duration of each task varied from

our original expectations. We did not account for several setbacks including several

instances of hardware failure and a delay on funding. As a result, to meet timeline

milestones, we were forced to compromise on software and hardware used due to

resource availability and timing. Examples include using YOLO instead of our own CNN,

images without IR spectrum for the training and forgoing the development of an external

chassis for the camera.

Slide 27: Project Challenges

This project experienced several challenges, several of which can be tied to COVID

restrictions. Until the entire group was vaccinated, we were unable to meet. Due to the

ambitious nature of this project, the scale and shortfalls of the project were not fully

accounted for. We had multiple pieces of hardware that were faulty or not up to

specification, which added lead time or not having the appropriate part due to funds.

Another difficulty faced was the limitations of the Raspberry Pi. Running programs

simultaneously on the Raspberry Pi also affected the consistency of the servo rotation

as well as the speed of the object detection program.

Slide 28: Project Learnings and Plans

The project was very educational when coming to terms with expectations and

collaboration in a virtual setting. Microsoft Teams made it possible to work remotely for

the full course of the project. Teams is incredibly flexible for collaboration combining

filesharing, chat client, and task/deadline setting.

For future iterations we plan to add an IR sensor and use a camera with a normal

recording space and a focusable lens to due to the incidental bleed caused by Infer-red

radiation. Add additional annotated images to the training library to further reinforce the

CNN accuracy. Using a 360-degree servo with feedback to accurately determine

camera position for recording and adding a second servo to allow y axis rotation.

Additionally, implementing a specialized CNN and moving from Raspberry Pi OS to

onboard implementation to improve performance.

Slide 29: Conclusion

JERIC – To wrap everything up, it is possible to have an implementation in the initially

proposed scheme. The processing speed can be improved with the use of a different

single board computer with an onboard GPU, or a neural processor stick added onto the

Raspberry Pi. As Chris mentioned, we need to refine the neural network for the object

detection to be passable as a safety tool and for the purpose originally intended. Lastly,

consolidating the code and integrating the wireless sensor network will be necessary to

utilize each component to raise the same alarm and make this project more complete.

Overall, it was an enriching experience attempting to provide a different solution to a

complex problem. We thank you for your time listening to our presentation.

