CALIFORNIA STATE UNIVERSITY, BAKERSFIELD

SMART HOME USING VOICE CONTROL

BY: KHOA T TRUONG
 ROLAND TEREZON
 ROBERTO CALDERON
 TUONG TRIEU
 OMAR MARTINEZ
 TAI PHAN
OUTLINE

• Introduction
• Problem Definition
• Problem Statement and Formulation
• Design Requirement
 • Server Hardware Selection
 • Software Selection
 • Speech Recognition Hardware
 • Amazon Echo Interaction Model
• Demonstration
INTRODUCTION

• Technological advancements have made day to day life more comfortable.
• Technology is getting more and more comprehensive.
• Everything now a days has either an application or can be controlled remotely.
• Our project should be controlled by the mere sound of your voice.
PROBLEM DEFINITION

• We will try and address some of the problems with existing smart home models
• Non recognizable commands.
• More interactive software.
• Easier installation if not installed already in a home.
PROBLEM STATEMENT AND FORMULATION

Smart Home System is:

• Interactive
PROBLEM STATEMENT AND FORMULATION

• Convenient, …+

• Energy Saving
PROBLEM STATEMENT AND FORMULATION

- Cost Effective
COST ESTIMATE

<table>
<thead>
<tr>
<th>Components</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Raspberry Pi 4 Ultimate Starter Kit</td>
<td>$35-$55</td>
</tr>
<tr>
<td>2. ESP 8266</td>
<td>$10</td>
</tr>
<tr>
<td>3. Amazon Echo</td>
<td>$35</td>
</tr>
<tr>
<td>4. Mini Breadboard</td>
<td>$5</td>
</tr>
<tr>
<td>5. RGBW LED 5 meters (16ft)</td>
<td>$40</td>
</tr>
<tr>
<td>6. Mini Model Home</td>
<td>$200 (Provided)</td>
</tr>
<tr>
<td>7. Power Supply for Model Home</td>
<td>Provided?</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$135~</td>
</tr>
</tbody>
</table>
ORIGINAL MODEL HOME IDEA

MATERIALS:
• Wood
• Carboard
• Nails
• Glue
• Etc.
NEW MODEL HOME

MATERIALS:
• Premade Dollhouse

PROS:
• Opens up
• Easy access for lighting set-up
• Easy access for wiring
• Portable
SMART HOME COMMUNICATION DISTANCE

- Using normal tone (no yelling, shouting, etc.)
- Normal indoor setting

20 - 25 Ft
SMART HOME COMMUNICATION DISTANCE

- Using louder tone (some shouting, maybe yelling)
- Normal indoor setting
- May need to shout louder outdoors
SMART HOME COMMUNICATION DISTANCE

• Communication device can be taken anywhere—As long as the Wifi is connected to it
SMART HOME COMMUNICATION DISTANCE

- More distance = more ambient noise = more interruption = more likely to fail
SMART HOME COMMUNICATION DISTANCE

- Enclosed spaces with less noise will give better distance results
SMART HOME COMMUNICATION ADDS

- There is a way to have multiple communication devices, thus moving one device around the house will not be necessary

Pro: Command the Smart Home from virtually anywhere in the house

Con: Will have to buy more communication devices = more spending
DESIGN REQUIREMENT - SERVER HARDWARE SELECTION

RASPBERRY PI 3

• This will be our main server.
• 1.2 GHz 64-bit quad core ARM Cortex-A71 processor.
• Bluetooth 5.0 and Wi-Fi hardware
• 2 USB 3.0 ports; 2 USB 2.0 ports.
• Raspberry Pi standard 40 pin GPIO connector.
• 2 × micro-HDMI ports (up to 4kp60 supported).
• Has 1 GB of onboard Ram.
DESIGN REQUIREMENT - SERVER HARDWARE SELECTION (CONT’D)

RASPBERRY PI 3 (CONT’D)

• Can run a host of operating systems:
 • Raspbian
 • Android
 • Windows 10
• Collects, analyzes, and acts on data collected.
• Can connect multiple sensors to GPIO pins.
• Can install openHABian that will allow the use of openHAB.
• Trouble with USB cables such as those used on MacBooks.
• Ideal candidate for IoT projects.
DESIGN REQUIREMENT - SERVER HARDWARE SELECTION (CONT’D)

5V RELAY

- The Raspberry Pi nor ESP8266 can control high voltage devices.
- It is an electrically operated switch or component used to break or interrupt a circuit.
- Can be turned on or off.
- It is controlled by low voltages that are provided by the ESP8266.
- Signal carries the trigger signal (HIGH) from the ESP8266 that activates the relay.
- Common is where the 120-2540V supply current enters the relay.
ESP8266

• It is a 3V WiFi module.
• VCC and GND are powering pins.
• Transmission (from server) and Receive (to server).
• It’s I/O pins run at 3.3V
HC-SR04 ULTRASONIC SENSOR

- Emits sound waves at frequency too high for humans to hear.
- It waits for sound to be reflected back and calculates the distance based on the time.
- Not affected by color of the material but can have difficulty if material is made from something that absorbs sound waves or reflects sound waves from the receiver.
- It has 4 pins:
 - VCC - needs 5V to be active.
 - Trig - it is triggered by the ESP8266 to emit the soundwave
 - Echo - Informs the ESP8266 when the receiver received the bounced back wave.
 - Ground - needs to be grounded using the ESP8266
DESIGN REQUIREMENT - SERVER HARDWARE SELECTION (CONT’D)

LM35 TEMPERATURE SENSOR

• Outputs an analog signal that is proportional to the instantaneous temperature.
• Output voltage can be interpreted to obtain a temperature reading in Celsius.
• Can measure from -55 degrees to 150 degrees Celsius with very high accuracy levels.
• It is a +10 mills volt per degree centigrade, meaning that with an increase in output of 10 mills volt by the sensor Vout pin, the temperature value increases by one.
• Has 3 pins:
 • Vs- Voltage from the ESP8266 needed to activate the sensor.
 • Vout- Informs the ESP8266 of the reading
 • Ground- It is connected to the Ground of the ESP8266.
Gas sensor suitable for sensing LPG, Smoke, Alcohol, Propane, Hydrogen, Methane, and Carbon Monoxide concentrations in the air.

It is a metal oxide semiconductor type gas sensor that is based upon the change of resistance of the sensing material when gas contacts the material.

A voltage divide network is used to detect the concentrations of gas.

Specifications:
- Operates on 5V
- 20 kOhms of load resistance
- 10 kOhms – 60 kOhms of sensing resistance
- Concentration scope of 200 – 10000 ppm

It has 4 pins:
- Vcc- Connected to the ESP8266 to be active
- Ground- Also connected to the ESP8266
- A0- Provides analog output voltage in proportional to the concentration of smoke/gas
- D0- Provides digital representation of the presence of combustible gases.
DESIGN REQUIREMENT - SERVER HARDWARE SELECTION (CONT’D)

SAMPLE IMAGE

- It will require wiring for:
 - High Voltage (AC) – 120 to 240 VAC
 - Low Voltage (DC) – 3.3 to 5 VDC
 - Data (Ethernet & communication) – cat5e and Wireless
 - Protection devices – Breaker and Fuses
 - Control Devices – Switches, outlets and relays
DESIGN REQUIREMENT - SERVER HARDWARE SELECTION (CONT’D)

SET-UP

- Raspberry Pi will be our main server.
- It will connect to appliances throughout the house.
- Will connect to sensors, lighting, and other devices.
- We will most likely be using smart appliances.
- For those that do not have smart home ready we can hardwire it with the help of an ESP8266.
HOME WIRING

• Main power feed is located at the exterior of the dwell with 120-240 VAC service lines.
• Circuits branches inside the home breaker box will route the dedicated electrical service to devices (outlets, switches and fixtures)
• Control Box will interrupt the circuits to add a smart control device that can be manipulated via software.
CONTROL MODULE

• Voltage regulator: capable of providing the VDC for electronic components.
• ESP8266 board: allows wireless communication with main server to transmit data commands.
• Relay box: it acts as a switch to allow the VAC source on/off.
• Hardwire device: usually an outlet, or wall switch where devices are control or connected.
VOLTAGE A.C – VOLTAGE D.C

- Voltage regulator
- Transformer
- Transformer less
- Size efficient
DESIGN REQUIREMENT - SOFTWARE SELECTION

RUN ON LINUX

- Setup Rasperian OS on Rasperry Pi 3
- Using Python for coding application on Server side
- Setting openHAB Server on Rasperian OS
DESIGN REQUIREMENT - SOFTWARE SELECTION (CONT’D)

FRONT END – CONTROL DEVICES

• Our smart home system to be able to control devices with any phone or computer
• Smart home ecosystem called OpenHAB, provide
 • Web version
 • Mobile applications that run on Android and iOS
DESIGN REQUIREMENT - SOFTWARE SELECTION (CONT’D)

UNIFICATION PROTOCOL

- We seek a protocol that will translate different protocols and seamlessly integrate them together.
- Message Queue Telemetry Transport (MQTT) messaging protocol also known as Mosquitto.
 - MQTT is a lightweight messaging protocol that sits on top of the TCP/IP protocol and is an ISO standard (ISO/IEC PRF 20922).
 - MQTT is a very small protocol that is a publish and subscribe-based messaging protocol.

Enable MQTT broker on openHAB.
DESIGN REQUIREMENT - SOFTWARE SELECTION (CONT’D)

SERVER SIDE

• Using Python to coding Server-Side application connect with Amazon Echo Show (use AWS)

```python
import fauxmo
import logging
import time
import sys
import RPi.GPIO as GPIO  # Import GPIO library

from debounce_handler import debounce_handler
logging.basicConfig(level=logging.DEBUG)

class device_handler(debounce_handler):
    '''Publishes the on/off state requested, and the IP address of the Echo making the request.'''

    TRIGGERS = {'FAN1': '2000', 'FAN2': '151000'}

    def act(self, client_address, state, name):
        print("State", state, "from client ", client_address)
        GPIO.setmode(GPIO.BOARD)  # Use board pin numbering
        GPIO.setup(int(7), GPIO.OUT)  # Setup GPIO Pin to OUTPUT
        GPIO.output(int(7), state)  # State is true/false

        if name == "kitchen":
            GPIO.setmode(GPIO.BOARD)  # Use board pin numbering
            GPIO.setup(int(7), GPIO.OUT)  # Setup GPIO Pin to OUTPUT
            GPIO.output(int(7), state)  # State is true/false
        elif name == "living room":
            GPIO.setmode(GPIO.BOARD)  # Use board pin numbering
            GPIO.setup(int(11), GPIO.OUT)  # Setup GPIO Pin to OUTPUT
            GPIO.output(int(11), state)  # State is true/false
        else:
            print("Device not found!")
```
VOICE CONTROL

• Raspberry Pi 3
• Amazon Echo Show 5
AMAZON ECHO SHOW 5
DESIGN REQUIREMENT - SOFTWARE SELECTION (CONT’D)

SPEECH RECOGNITION HARDWARE – AMAZON ECHO SHOW

- Pick-up sound from any direction.
- Echo Show voice processing is done in the cloud through Amazon Voice Service.
- Being improved to better recognize spoken words.
DESIGN REQUIREMENT - SOFTWARE SELECTION (CONT’D)

AMAZON ECHO INTERACTION MODEL - ECHO DOT PHILIPS HUE EMULATOR

- Translate any device protocol to the Echo Dot.
- Turn any device into Philip Hues device then will be able to control it using voice command through the Echo Dot.
DEMONSTRATION

- Server side
 - Echo Show recognizes all devices

- Link demo: https://youtu.be/oP55Qt_gB0w