
CMPS 2010 Coding Final
Fall 2024

Option 1
TVShow.h, TVShow.cpp (Requirements)

● Declare & Define a class called TVShow with the following:
○ Class Variables:

■ string title
■ string platform
■ double score

○ Constructors:
■ A default constructor that sets all strings to empty strings and the score to 0

○ Class Functions:
■ Setters for all three class variables
■ string toString() that returns a string using the following format:

Breaking Bad, Netflix, 9.8

Main.cpp (Requirements)

● Main.cpp will contain two functions:
○ int main()

■ Display a nice greeting to the user and ask how many shows they would like to review
■ Dynamically create a TVShow array using the size provided by the user
■ In a loop (for each TVShow in the array):

● Prompt the user for the title, platform, and score.
● Use the setter functions to set the array object values accordingly

■ Call the outputShows function and pass the completed TVShows array and size
○ void outputShows(TVShow shows[], int size)

■ In a loop (for each show in shows[]) :
● Call the toString() class function and write the returned string to the screen

■ Close the file

The output of the outputShows function should look something like this:

NOTES:
● The strings provided by the user may contain spaces, so you will probably want to use getline()
● For this assignment you DO NOT need to validate any of the user inputs.
● To compile your code:

g++ Main.cpp TVShow.cpp -o main



Option 2
Implement a C++ program that helps users track their personal expenses.
Your program will allow users to input, view, and analyze their spending data.

Finance.cpp (Requirements)

● User Menu
Implement a menu system that provides the following options:
○ Add a new expense.
○ View all expenses.
○ View total expenses and calculate the average expense amount.
○ Exit the program and write the list of expenses to a file.

● Input and Output:
○ Allow the user to enter each expense as a decimal.
○ Display all recorded expenses with two decimal points of precision

● Functions:
○ Implement functions for each menu option (e.g., addExpense, viewExpenses, calculateTotals).

● Data Storage:
○ Use an array to store the expenses during program execution.
○ When the user decides to exit, loop through the array of expenses and write them all to a file.
○ Also write the total and average to the file.

● Error Handling:
○ Validate user input (e.g., ensure the expense amount is a positive number).
○ Handle file reading/writing errors gracefully.

● Program Flow:
○ The program should loop back to the main menu after each action unless the user chooses to exit.

NOTES:
● To compile your code:

g++ Finance.cpp -o main

Run this command from your midterm folder to submit your work:

/home/fac/paul/s/final.sh


