CMPS 3390 Homework 1

Fall 2024

Application Development
Application development is the process of creating software programs that perform specific tasks on computers
or mobile devices. It involves planning, designing, coding, testing, and maintaining the app to ensure it meets user
needs and functions correctly. Developers often work in teams, using programming languages, frameworks, and
tools to build apps that solve problems or provide entertainment.

Application
A broad term for any software program designed to perform specific tasks for a user.
Applications can run on various devices, including computers, smartphones, and tablets.
Examples include word processors, web browsers, and accounting software.

App
A more informal, shortened version of "application." It usually refers to mobile or web
applications specifically designed for smartphones, tablets or platform markets. Apps are

typically simpler, more user-friendly, and designed for quick, specific tasks, like checking the
weather, messaging, or gaming.

Platform
The underlying environment or framework that supports the operation of applications, apps,
or services. It provides an entire infrastructure, such as an operating system, a cloud service, or
service chain. Platforms enable developers and creators to build, run, and distribute their
resources. Platforms often include tools, libraries, and APIs to help developers create
resources that are compatible with the platform.

Many projects begin as apps or applications and evolve into platforms.



Main Concepts

Programming Languages & Frameworks
Choosing appropriate languages and frameworks for development.
Examples: JavaScript with React, Python with Django, Swift for iOS, etc

Version Control
Managing and tracking changes in the source code.
Tools: Git, GitHub, GitLab, Bitbucket

Requirement Analysis
Understanding user needs and defining the application's purpose, scope, and features.
Examples: Interviews, use cases, user stories, and requirement specifications

Software Design
Creating the architecture and design of the application.
Examples: System architecture, design patterns, Ul/UX design, and data modeling

Collaborative Development
Team Communication, task management, version control, code reviews, documentation.
Tools: Discord, Slack, Github, Trellio, Notion, Markdown

Documentation
Research and development, user feedback, logging, dev history, user manuals.
Tools: Markdown, Sphinx, ReadTheDocs, Notion, Office Suite

End User Experience
Ensuring the application is user-friendly and intuitive.
Components: Usability testing, responsive design, and accessibility considerations

Graphic Design Basics
Creating a unique look and feel using style guides and custom graphics.
Tools: GiMP, Canva, Inkscape, Krita, Penpot, SVG-Edit, Google Fonts

Client/Server Communications
Connecting the application with external services or other parts of the system.
Examples: https requests, websockets, APIs, integrations, rpc, REST

Data Management
Designing and managing the data layer of the application.
Examples: SQL, NoSQL, local files

Security
Protecting the application from vulnerabilities and ensuring data privacy.
Components: Authentication, authorization, encryption, and secure coding practices

Performance & Testing
Ensuring the application functions correctly and meets requirements.
Components: Unit testing, integration testing, system testing, caching, code optimization

Maintenance
Ongoing support, bug fixes, and feature enhancements after deployment.
Components: Monitoring, patch management, and user feedback loops



